B.TECH. CURRICULUM

ACADEMIC YEAR: 2024-25

DEPARTMENT OF CIVIL ENGINEERING

Undergraduate Rules and Regulations-2024 (URR24 -CE_R1) In accordance with the National Education Policy 2020 w.e.f AY 2025-26

Regulations Governing the Choice Based Credit System and Multiple Entry and Multiple Exit Optionswith Competency-Focused Outcome Based Curriculum (CF-OBC)

KAKATIYA INSTITUTE OF TECHNOLOGY & SCIENCE, WARANGAL - 506 015 TELANGANA (UGC Autonomous Institute Under Kakatiya University, Warangal)

TABLE OF CONTENTS

S. No.	Contents	Page No.
1.	Institute Vision and Mission	3
2.	Department Vision and Mission	4
3.	Program Educational Objectives	4
4.	Program Learning Outcomes	6
5.	Design of Curriculum	7
6.	Undergraduate Rules and Regulations-2024 (URR24) In accordance with the National Education Policy 2020	10
7.	Summary of course components	26
8.	Semester wise Course / Credit distribution	27
9.	B. Tech (CE) – Scheme of Instructions	28
10.	Multidisciplinary Open Elective Courses (MOPEC) Baskets:	40
11.	Program Elective Courses (PECs)	48
12.	Semester- I Syllabi	49
13.	Semester – II Syllabi	84
14.	Semester – III Syllabi	126
15	Semester – IV Syllabi	156

History:

PROGRAM	DESCRIPTION		
	Intake	NBA Accreditation	
UG- B.Tech. Civil Engineering	 Started with 40 seats in 1980 Intake increased to 60 in 1994-1995 Intake increased to 120 in 2012-2013 Intake decreased to 60 in 2023 	 First time accreditation: 2001-2004 Reaccreditation-1: 2006-2009 Reaccreditation-2 2011-2014 Reaccreditation-3 2016-2019 Reaccreditation-4: 2019-2022 Reaccreditation-5: 2022-2025 	

INSTITUTE VISION AND MISSION

INSTITUTE VISION

To make our students technologically superior and ethically strong by providing quality education with the help of our dedicated faculty & staff and thus improve the quality of human life

INSTITUTE MISSION

- M1 To provide latest technical knowledge, analytical & practical skills, managerial competence and interactive abilities to students, so that their employability is enhanced
- M2 To provide strong human resource base to cater to the changing needs of the Industry and commerce
- M3 To inculcate a sense of brotherhood and National Integrity

VISION

The Vision of the department is to become a leading centre of excellence in producing quality human resource in civil engineering by developing a sustainable technical education system to meet the changing technological needs of the Country. The Department will make significant contributions to the economic development of the state, region and nation.

MISSION

M1:	The Mission of Civil Engineering Department is to produce outstanding Civil		
	Engineering graduates with highest ethics.		
M2:	To impart quality education in civil engineering to raise satisfaction Level of all Stake holders.		
M3:	To serve society and the Nation by providing professional civil Engineering Leadership to find solution to community, regional and Global problems and		
	accept new challenges in rapidly changing Technology.		

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

PEO1: Technical Competence:

Consistently build multifaced technical competencies to integrate proficiency with wavering industrial demands

PEO2: Successful Career

Demonstrate professionalism in all strides to protect constitutional interests of Society

PEO3: Soft Skills and Life-long Learning

Accustomed to acquire enduring familiarity with modern tools and technology for accomplishing sustainable prospects

PEO TO MISSION MAPPING

	M1	M2	M3
PEO1	2	3	3
PEO2	3	3	2
PEO3	2	3	3

PEO Statements	Mission Statements	Mapping Level	Justification
	M1	2	The focus on professional competence and higher academic qualifications differ from the objective of nurturing ethical graduates in civil engineering.
PEO1	M2	3	Mapped strongly aiming to interact with Research organizations and industries, exposing students to state-of-the art technologies for a successful professional career.
	M3	3	Quality education and comprehensive knowledge is imparted to the students, by highly qualified faculty in a congenial environment, to meet the changing needs of society.
	M1	3	By providing the state of the art facilities, the experienced and dedicated staff nurtures the reasoning, problem solving and research capabilities of students in Civil and allied Engineering problems.
PEO2	M2	3	By imparting quality education through qualified faculty and the state of the artfacilities sothat students exhibit professionalism in all strides of life.
	M3	2	Addressing challenging issues concerning safety and sustainability is consistent with offering top-notch civil engineering education to meet the expectations of stakeholders.
	M1	2	The ethical excellence of Civil Engineering graduates is linked to their proficient use of advanced technology and their awareness of its impact on society.
PEO3	M2	3	To identify and develop a sense of responsibility towards Socio - technical, economical and environmental related issues.
	M3	3	To sensitize the students to exhibit leadership and to provide solutions toglobal challenges.

	Apply knowledge of basic and engineering sciences to identify, investig			
PSO1: analyze, design and develop innovative solutions to com-				
engineering problems using modern tools and techniques.				
	Evaluate construction projects to meet global sustainable goals adapting			
ethics, leadership, life long-learning ability of emerging technol				
PSO2: demonstrating communicative and managerial competencies in div				
working environments.				

PO/PSO TO PEO MAPPING

	PO's	PEO1	PEO2	PEO3
PO1	Engineering Knowledge	3	1	3
PO2	Problem Analysis	3	1	3
PO3	Design/Development of solutions	3	2	3
PO4	Conduct investigations of complex problems	3	1	3
PO5	Engineering Tool Usage	3	2	3
PO6	The Engineer and The World	1	3	1
PO7	Ethics	2	3	3
PO8	Individual and Collaborative Team work	3	3	2
PO9	Communication	2	3	3
PO10	Project management and finance	1	2	2
PO11	Lifelong Learning	3	2	3
PSO1:	Apply knowledge of basic and engineering sciences to identify, investigate, analyze, design and develop innovative solutions to complex civil engineering problems using modern tools and techniques.	3	3	2
PSO2:	Evaluate construction projects to meet global sustainable goals adapting ethics, leadership, life long - learning ability of emerging technologies, demonstrating communicative and managerial competencies in diversified working environments.	3	3	2

DESIGN OF CURRICULUM

Salient Features

- The URR24 regulations are inline with the National Education Policy 2020 (NEP 2020) and the AICTE model curriculum to provide multidisciplinary holistic education to produce wellrounded engineering graduates.
- Multiple Entry Multiple Exit (MEME) option.
- Multidisciplinary four year UG progrmme with award of following degrees
 - B Tech
 - B. Tech with "Minor"
 - B. Tech "Honours"
 - B. Tech "Honours with Research"
- 170+ Credit Liberal Engineering Education.
- A strong program core of 16 courses and 6 baskets of program electives to ensure the breadth and depth in a chosen domain of studies. Program electives are arranged either to grow in a specified vertical or have diversified exposure.
- Full semester industry internship to the interested students.
- Aggressive model of "Learning-by-doing" in the form of PRACTICUM.
- Activity Based Learning (ABL) about Life, Literature and Culture is embedded in to the
 curriculum in four semesters, ensuring all dimensional holistic growth of the learner. These four
 activity based mini courses are offered as two sequels namely Social Empowerment Activities
 (SEA) and Self Accomplishment Activities (SAA).
- These regulations follow holistic approach of education, ensures strong science, mathematics
 foundation and program core, develops expertise in domain vertical though sequel of electives,
 ensures significant exposure of additional discipline through "Minor" programme, challenges
 good learners through "Honours" programme and for the research oriented students through
 "Honours with Research" programme.
- Along with Major and Minor disciplinary courses, students are expected to learn Multidisciplinary open elective courses (MOPEC), skill enhancement courses (SEC), ability enhancement courses (AEC), value added courses (VAC), activity based learning (AL) and experiential learning (EL) towards multidisciplinary holistic education and for increased employability.
- These regulations provide competency-focused outcome based curriculum (CF-OBC) for skill development, multidisciplinary learning, wider access, inclusiveness and entrepreneurship.
- In our CF-OBC, each course has an additional component of "Contents for self-study", which is carefully designed to ensure additional hours of learners engagement. The learner thus is nurtured towards the "Self-Learning" and "lifelong learning" which are essential attributes of a 21st Century learner. The same is incorporated in the scheme of instructions in the form of (i) Outside the class work (self-study) hours, (ii) total engagement hours for every course.
- In summary, these regulations are expected to develop technical competencies, through courses from programme core, programme electives, engineering science and basic science; and also develop generic competencies, soft skills, social, physical, mental and spiritual personality through carefully articulated courses from MOPEC baskets, Liberal Learning and humanities sequels. Thus, offers a unique "T-Shaped" liberal "Pi-Model" of Engineering Education

The Curriculum consists of the following components of study:

BSC	Basic Science Course	ABL-SAA	Self- Accomplishment
			Activities
HSMC	Humanities and Social Sciences	ABL-SEA	Social Empowerment
	including Management Course		Activities
ESC	Engineering Science Course	VAC	Value Added Course
PCC	Program Core Course	AEC	Ability Enhancement Course
PEC	Program Elective Course	EXL	Experiential Learning
MOPEC	Multidisciplinary Open Elective	SEC	Skill Enhancement Course
	Course		

Multidisciplinary Open Electives Courses (MOPEC)

The Curriculum provides four slots of open electives with fourteen baskets. This is planned to give exposure to interdisciplinary and cross disciplinary domains. The courses in these baskets are planned both at department and institute level. Students can choose any combination of these courses (not floated by the parent department) to get familiar with other domains of learning.

Practicum

The curriculum provides ample opportunities for experiential learning (learning-by-doing) to impart important skills like problem solving, critical thinking and communication. Under experiential learning the PRACTICUM is a semester long project work included in I to IV semesters, having a weightage of 1 credit in each semester. Under PRACTICUM, The students are expected to implement a micro level project (at a level of course project) solving a practical problem or a project based on the combination of different theory or lab courses being studied in a corresponding semester. The experiential learning is continued in the form of a Seminar in fifth semester, a mini project in sixth semester, major project in seventh & eight semesters and mandatory 6-8 week internship during summer breaks.

(Note to HoDs: A batch of students (according to Roll Numbers) will be allotted to each of the course handling teachers of the corresponding semester. The teacher will be assigning a micro level project to each student. At the end of the semester the student will demonstrate a prototype / working model / system / process and submit a four to six page report. Course teacher is expected to evaluate the allotted batch of students and submit grades to the HoD. There will not be ESE for PRACTICUM. The batch of students will be allotted to a course handling teacher on the basis of series of Roll Numbers, similar to the allotment done for tutorial matrix.

Example: The project work under PRACTICUM for the course ACT may be Advanced Concrete Technology may be

- 1. Mechanical & Durability properties of Geopolymer concrete
- 2. Experimental investigation on self curing concrete
- 3. Bacterial Concrete
- 4. Limestone calcined clay cement (LC3)

The URR24 focuses on CF-OBC with program depth component in terms of Program Core Courses (PCCs) and Program Elective Courses (PECs)

Program Core Courses (PCC)

The curriculum offers sixteen core courses referred to as Program Core. Several academic models from reputed institutions in the country and outside the country are studied in articulating this Program Core, to make curriculum globally competitive. The courses are augmented with laboratory components as per the need.

Program Electives Courses (PEC)

The curriculum offers six baskets of Program Electives, each basket having identified courses corresponding to the programme specializations called verticals. This enables learners to grow in a domain-specialization or domain-vertical. The student can opt courses in sequel (PEC-1 to PEC-4) in any of the specific vertical or across the verticals.

(Note to HoDs: For example, the CE programme shall offer verticals in "Structural Engineering", "Transportation Engineering", "Geotechnical Engineering", etc.)

Activity-Based Learning (ABL) about Life, Literature and Culture

Activity based learning (ABL) is blended with the Curriculum for ensuring holistic growth of the learner. These activity based minicourses are offered as two sequels namely "SEA" (Social Empowerment Activities) and "SAA" (Self Accomplishment Activities).

According to Dr. K. M. Munshi, "Education will fail ignominiously in its objective if it manufactures only a robot and called him an economic man stressing the adjective economic and forgetting the substantive man. A university cannot afford to ignore the cultural aspects of education whatever studies it specializes in. Science is a means, not an end. Whereas culture is an end in itself. Even though you may ultimately become a scientist, a doctor, or an engineer, you must, while in college, absorb fundamental values which will make you a man of culture..."

The NEP-2020 quotes, "Higher education must develop good, well-rounded and creative individuals, with intellectual curiosity, spirit of service and a strong ethical compass". Moving towards a more liberal undergraduate education is one of the most important feature of the NEP2020 ."The needs of the 21st century require, that liberal broad-based multidisciplinary education become the basis for all higher education. This will help develop well-rounded individuals that possess critical 21st century capacities in fields across arts, humanities, sciences, social sciences, and professional, technical, and vocational crafts, an ethic of social engagement, and rigorous specialization in a chosen field or fields. Such a liberal education would be, in the long run, the approach across all undergraduate programs, including those in professional, technical, and vocational disciplines. Imaginative and flexible curricular structures will enable creative combinations of disciplines for students to study, thus demolishing currently prevalent rigid boundaries and creating new possibilities for lifelong learning. The notion of 'knowledge of many arts'- i.e. what is called 'liberal arts' in modern times – must be brought back to Indian education, as it is exactly the kind of education that will be required for the 21st century."

To ensure holistic development of the learner, an attempt has been made in this curriculum to blend engineering education appropriately with arts, humanities, crafts, ethic of personal and social engagement to ensure holistic development of the learner. Activity based liberal learning courses covering life, literature, and culture are added. Every learner is expected to take one such course in first four semesters. We strongly believe that these four liberal learning modules will expose the learners to multidisciplinary and holistic education as envisaged in NEP 2020.

(END OF THE SALIENT FEATURES OF URR24)

Undergraduate Rules and Regulations-2024 (URR24) In accordance with the National Education Policy 2020, w.e.f AY 2024-25

1. Title:

URR24 Regulations governing the Choice Based Credit System (CBCS) with Multiple Entry and Multiple Exit (MEME) options with Competency-Focused Outcome Based Curriculum (CF-OBC)

2. Scope:

These regulations are applicable to the undergraduate programmes being offered by the Institute

3. Duration of Programmes:

The undergraduate degree should be of four years duration, with multiple entry and multiple exist (MEME) options. The maximum duration for a student for complaining the degree requirement is as per NEP2020/UGC/AICTE guidelines. Four years multidisciplinary undergraduate programme allows the opportunity to experience the full range of holistic and multidisciplinary education with a focus on major and minor subjects as per the student's preference. The four-year programme may also lead to a degree with Research, if the student completes a rigorous research project in the major area(s) of study. The undergraduate programmes shall extend over four academic years (eight semesters).

With multiple entry and multiple exit options, the students can exit after the completion of one academic year (two semesters) with the UG certificate in CE; UG Diploma in CE after the study of two academic years (four semesters); and B. Voc in CE degree after the completion of three academic years (six semesters). The successful completion of four years undergraduate programme would lead to B. Tech in CE degree with optional Minor/Honours/ Honours with Research.

4. Credit Requirement:

As per the guidelines released by UGC under National Higher Education Qualification Framework (NHEQF), for Multiple Entry and Multiple Exit (MEME) in Academic Programmes offered in Higher Educational Institutions, the students shall complete the courses equivalent to minimum credit requirements as shown in the table given below for the award of UG certificate, UG diploma, Bachelor degree, Postgraduate diploma and Master's degree:

Qualification Type and Credit Requirements				
NHEQF Levels	Exit with	Credit Requirements		
4.5	Undergraduate Certificate (in the field of learning/discipline) for those who exit after the first year (two semesters) of the undergraduate programme. (Programme duration: first year or two semesters of the undergraduate programme)	36-40		
5	Undergraduate Diploma (in the field of learning/discipline) for those who exit after two years (four semesters) of the undergraduate programme. (Programme duration: First two years or four semesters of the undergraduate programme)	72-80		
5.5	Bachelor's Degree	108-120		
6	(Programme duration: Three years or six semesters). Bachelor's Degree (Honours/ Research) (Programme duration: Four years or eight semesters).	144-160		
6.5	Post-Graduate Diploma for those who exit after the successful completion of the first year or two semesters of the tqo-year Master's degree programme. (Programme duration: One year or two semesters of the Post-Graduate programme)	36-40		
7	Master's Degree (Programme duration: Two years or four semestersafter obtaining four year Bachelor's degree).	72-80		
7	Master's Degree (Programme duration: One year or two semesters after obtaining a four-year Bachelor's degree Honours / Research).	36-40		
8	Doctoral Degree	Minimum prescribed credits for course work and a thesis withpublished work		

^{*} Details of course-wise credits are described in the later part of the Regulations.

5. Commencement:

These Regulations in accordance with National Education Policy 2020 shall come into force from Academic Year 2024-25 onwards. These regulations shall be implemented from the academic year as mentioned below.

NHEQF		From Academic	
Level	Programme	Year	
Undergraduate	Programme		
Level 4.5	Undergraduate Certificate (One year or two semesters)	2024-25	
Level 5	Level 5 Undergraduate Diploma (Two years or four semesters)		
Level 5.5	Level 5.5 Bachelor's Degree (Three years or six semesters)		
Level 6	Bachelor's Degree with Honours/ Research (Four years	2027-28	
Level 6	or eight semesters)	2027-20	

6. Eligibility Criteria:

- (i) Level 4.5: The students who have successfully completed Grade 12 / Intermediate with MPC or its equivalent course shall be eligible for admission to the first year degree programme.
- (ii) Level 5: The students who have successfully completed Level 4.5 of the undergraduate programme at this Institute or any other HEIs registered on Academic Bank of Credits Portal
- (iii) Level 5.5: The students who have successfully completed Level 5 of the undergraduate programme at this Institute or any other HEIs registered on Academic Bank of Credits Portal
- (iv) Level 6: The students who have successfully completed Level 5.5 (bachelor degree of three years or six semesters) of undergraduate programme at this Institute or any other HEIs registered on Academic Bank of Credits Portal

7. Academic Bank of Credits (ABC):

The Academic Bank of Credits (ABC), a national-level facility promotes the flexibility of curriculum framework and interdisciplinary/ multidisciplinary academic mobility of students across the HEUIs in the country with appropriate "credit transfer" mechanism. It is mechanism to facilitate the students to choose their own learning path to attain a Certificate / Diploma / Degree, working on the principle of multiple entry and exit as well as anytime, anywhere, and any level of learning. ABC will enable the integration of multiple disciplines of higher learning leading to the desired learning outcomes including increased creativity, innovation, higher order thinking skills and critical analysis. ABC will provide significant autonomy to the students by providing an extensive choice of courses for a programme of study, flexibility in curriculum, novel and engaging course options across a number of highereducation disciplines / institutions.

7.1 Operationalization of ABC:

Shall appoint institutional nodal officer for ABC as per UGC directives. The nodal officer shall be responsible for proper operationalization of ABC within the college and with the university.

The ABC related operations shall be as follows:

- (i) The MEME option for student is facilitated at the undergraduate and postgraduate levels.
- (ii) It would facilitate credit accumulation through the facility created by the ABC scheme in the "Academic Bank Account" opened for students across the country to transfer and consolidate the credits earned by them by undergoing courses in any of the eligible HEIs. The eligibility of HEIs to offer courses shall be as per UGC (Establishment and Operationalization of ABC scheme in Higher Education) Regulations 2021 dated 28.7.2021 and changes therein notified by the UGC from time to time.
- (iii) The ABC allows credit redemption through the process of commuting the accrued credits in the Academic Bank Account maintained in the ABC for the purpose of fulfilling the credits requirements for the award of certificate/ diploma/ PG diploma/ degree by the authorized HEIs.
- (iv) Upon collecting a certificate, diploma, PG diploma or degree, all the credits earned till then, in respect of that certificate, diploma, PG diploma or degree shall stand debited and redeemed from the account concerned.
- (v) HEIs offering programmes with the MEME system need to register in the ABC to enable acceptance of multidisciplinary courses, credit transfer, and credit acceptance.
- (vi) The validity of credits earned will be for a maximum period of seven years or as prescribed by the UGC.

(vii) The procedure for depositing credits earned, its shelf life, redemption of credits, would be as per UGC (Establishment and Operationalization of ABC scheme in Higher Education) Regulations 2021 dated 28.7.2021 and changes therein notified by the UGC from time to time.

7.2 Monitoring, Support and Quality by Universities and ABC:

- (i) It shall be the responsibility of Registered HEIs, to monitor the development and operationalization of the ABC programme at the university level and at the level of their affiliated colleges.
- (ii) Registered HEIs shall offer teachers training, staff training, mentoring, academic and administrative audit and other measures for improving the quality of performance of the ABC facility and promotion of holistic and multidisciplinary education with the support of ABC.
- (iii) The quality assurance of the implementation of ABC at the level of the registered university shall be looked by the Director, Examinations and Evaluation of the Institute of the officer nominated by him different from ABC nodal officer, under the directives and guidance of Controller of Examinations of the Institute.
- (iv) The Institute shall upload, annually, on its website, a report of its activities related to the Academic Bank of Credits, as well as of measures taken by it for Quality Assurance, Quality Sustenance and Quality Enhancements.
- (v) The Grievance Redressal Committee constituted by the examination section shall be responsible for addressing the Grievance and appeals related to ABC.

8. Building Competencies through Pedagogy:

Effective learning requires appropriate competency focused outcome based curriculum (CF-OBC), an apt pedagogy, continuous formative assessment and adequate student support. The intention is to contextualize curriculum through meaningful pedagogical practices, which determine learning experiences directly influencing learning outcomes expected competencies. ICT will be used in creating learning environment that connects learners with content, peers and instructors all through the learning process respecting pace of learners. The faculty shall follow innovative learner centric pedagogical approaches:

- (i) Classroom process must encourage rigorous thinking, reading and writing, debate, discussion, peer learning and self-learning
- (ii) The emphasis is on critical thinking and challenge to current subject orthodoxy and develop innovative solutions. Curricular content must be presented in ways that invite questioning and not as a body of ready knowledge to be assimilated or reproduced. Faculty should be facilitators of questioning and not authorities on knowledge.
- (iii) Classroom teaching should focus on the 'how' of things i.e. the application of theory and ideas. All courses including social sciences and humanities shall have design project and practicums to enable students get relevant hands-on experiences.
- (iv) Learning must be situated in the Indian context to ensure that there is no sense of alienation from their context, country and culture.
- (v) Classroom processes must address issues of inclusion and diversity since students are likely to be from diverse cultural, linguistic, socio-economic and intellectual backgrounds.
- (vi) Cooperative and peer supported activities shall be part of empowering students to take charge of their own learning.

- (vii) Faculty shall have the freedom to identify and use the pedagogical approach that is best suited to a particular course and student.
- (viii) Pedagogy PBL (Problem/Project Based Learning) shall be brought into practice as part of curriculum. Experiential learning in the form of practicum, seminar, mini project, major project and internship with a specified number of credits is made mandatory.
- (ix) The course faculty shall provide the "Contents for self-study", and motivate the learners to engage in outside the class work learning (self-learning). The learner thus is nurtured towards the "Self-Learning" and "lifelong learning" which are essential attributes of a 21st Century learner.
- (x) Blended Learning (BL) mode shall be used to help learners develop 21stcentury skills. BL should be carefully implemented and should not be replacing classroom time as a privilege.
- (xi) The UGC regulations, 2021 on Credit Framework for Online Learning Courses through SWAYAM, facilitates an institution to allow up to 40 percent of the total courses being offered in a particular programme in a semester through massive open online courses (MOOCS) offered by the SWAYAM / NPTEL and other e-learning platforms. Students shall be encouraged to complete equivalent courses through SWAYAM / NPTEL and other e-learning platforms, approved by the BoS chair and Dean AA, towards obtaining required credits wherever necessary.

9. Skill Enhancement, Ability Enhancement, Value Added Courses through e-learning:

Students shall be encouraged to obtain the required credits related to the skill enhancement courses (SECs), ability enhancement courses (AECs) and value added courses (VAC) through MOOCS platforms such as:

- (i) SWAYAM
- (ii) IIM-B
- (iii) University LMS
- (iv) CEC
- (v) NPTEL
- (vi) IGNOU
- (vii) Infosys Spring Board
- (viii) Future Skills Prime (digital skilling ecosystem developed by Govt. Of India and NASSCOM)
- (ix) Wadhwani Foundation
- (x) Tata Strive
- (xi) Any other platform approved by the BoS chair and Dean AA

After completing such courses, students have to submit the certificate to the concerned department and then after verification of the certificate the respective department will communicate the credits earned to the Dean, Academic Affairs for approval and onward transmission to examination section of the institute to deposit the credits in academic bank of credits (ABC).

10. CONFORMANCE TO NEP2020

MULTIPLE EXIT OPTIONS

Sl. No.	Exit Description	Exit Point	Degree/ Certificate offered	Goal
1.	First Exit	After completion of First year.	UG Certificate in CE	The student should be employable as Technical Assistant (CE) in any industry/organization.
2.	Second Exit	After completion of Second year.	UG Diploma in CE	The student should be employable as Technician (CE) in any industry/organization.
3.	Third Exit	After completion of Third year.	B. Voc in CE	The student should be employable as Technical Supervisor (CE) in any industry/organization.
4.	Normal Exit	After completion of Fourth year.	B.Tech in CE	The student should be employable as an Engineer (CE) in any relevant industry/organization.

10.2 MULTIPLE ENTRY OPTIONS

Sl. No.	Entry Descriptions	Entry Point	Eligibility	
1.	Normal (First)Entry	I-Sem. of theprogram	As per the TGSCHE guidelines & through Common Entrance Examination TSEAPCET	
2.	Second Entry	III-Sem. of the program	The successful completion of first year with UG certificate in CE from our institute.	
3.	Third Entry V-Sem. of the program		The successful completion of UG Diploma inCE from our institute.	
4.	Fourth Entry	VII-Sem. of the program	The successful completion of B.Voc in CEfrom our institute.	

- (i) No. of maximum exits: as per NEP2020/UGC/AICTE guidelines on MEME
- (ii) No. of maximum entry: as per NEP2020/UGC/AICTE guidelines on MEME
- (iii) Maximum gap between exit and entry: as per NEP2020/UGC/AICTE guidelines on MEME
- (iv) Academic Bank of Credits shall be maintained

11. Options for Degree Certificate

- (i). Learners who earn a minimum of total 174 credits will be awarded "B.Tech" degree which confirms to NEP2020 requirements of multidisciplinary holistic education.
- (ii). Fast Learners will have the following options to earn B. Tech degree with Honours/Minor.

B.Tech with "Minor" degree (with additional 18 credits): 172+18 Credits

Students opting for Minor degree offered by other departments / in identified cutting-edge technologies /external recognized organizations, can start the programme in either 3rd semester or in 5th semester as per their interest. The requirement for completion of Minor degree programme is that the students are,

- (i) **3**rd **to 6**th **semeseters**: allowed to take maximum one theory and one lab course in each semester, starting from 3rd to 6th semesters
- (ii) 7th & 8th semesters: allowed to take only one theory course per semester in 7th and 8th semesters Students should complete 4 theory and two lab courses by the end of 8th semester. However, All four theory courses have to be completed through MOOCS and lab courses have to be completed in the department which offers the Minor degree programme.

b) B.Tech with "Honours" degree (with additional 18 credits): 172+18 Credits

Students opting for Honours degree offred by their own department / external recognized organizations, can start in eith 3rd or 5th semester aas per their interest. The requirement for completion of Minor degree programme is that the students are,

- (i) 3rd to 6th semeseters: allowed to take maximum one theory and one lab course in each semester, starting from 3rd to 6th semesters
- (ii) 7th & 8th semesters: allowed to take only one theory course per semester in 7th and 8th semesters. Students should complete 4 theory and two lab courses by the end of 8th semester. However, All four theory courses have to be completed through MOOCS and lab courses have to be completed in the department which offers the Minor degree programme.

c) B.Tech - "Honours with Research" degree (with additional 18 credits by research): 172+18 credits

Students opting for Honours with Research degree, can start in 4th semester. They are expected to complete one course on "Research Methodology" through MOOCS or can complete one week FDP on "Research Methodology" during 4th semester (4 credits). They have to complete two research internships each of 2-month duration, one in summer after 2nd year (5 credits) and

KITSW - URR24 B. Tech CE Curriculum Page 16 of 197

other in summer after 3rd year (5 credits). They have to work on **individual research based project**, starting from 5th semester onwards. They have to present a Seminar on the individual research project in 5th semester, carryout a Mini-Project during 6th semester and continue the same as Major Project during 7th & 8th semesters. Finally, publish a research paper as outcome of their research project, in a journal indexed by SCI/SCOPUS/WEB OF SCIENCE (4 credits), by the end of 8th semester. (*The individual research project itself shall be considered for regular B. Tech degree programme under Seminar, Mini-Project and Major Project work courses)*

11.1 Summary of requirements for earning additional credits leading to "Minor", "Honours" and "Honours with Research" degrees:

Semester	B. Tech with "Minor"	B. Tech with "Honours"	B. Tech "Honours with Research"
I	-	ı	-
II	-	ı	-
	1 theory (4 credits)	1 theory (4 credits)	
III	+	+	-
	1 lab (1 credit)	1 lab (1 credit)	
	1 theory (4 credits)	1 theory (4 credits)	"Research Methodology"
IV	+	+	Theory Course (4 Credits)
	1 lab (1 credit)	1 lab (1 credit)	, , ,
Summer break after 2 nd year	-	-	2-Months Research Internship -I (5 credits)
	1 theory (4 credits)	1 theory (4 credits)	
V	+	+	-
	1 lab (1 credit)	1 lab (1 credit)	
	1 theory (4 credits)	1 theory (4 credits)	
VI	+	+	-
	1 lab (1 credit)	1 lab (1 credit)	
Summer break after 3 rd year	-	-	2-Months Research Internship -II (5 credits)
VII	1 theory (4 credits)	1 theory (4 credits)	
VIII	1 theory (4 credits)	1 theory (4 credits)	One research publication in Journal indexed by SCI / SCOPUS / Web of Science (4 Credits)
Total additional credits to be earned	Overall 18 credits (through 4 theory and 2 lab courses)	Overall 18 credits (through 4 theory and 2 lab courses)	18 credits (through Research Methodology, 2 Research Internships and a Research Publication out of Individual Research Project)

11.2 Credit requirements for four different options of the B. Tech Degree

	Ι	II	III	IV	V	VI	VII	VIII	Total
B. Tech	22	23	23	25	23	22	21	15	174
B. Tech with Minor	22	23	23	25	23	22	21	15	174(+18*)
B. Tech with Honours	22	23	23	25	23	22	21	15	174(+18*)
B. Tech. Honourswith Research	22	23	23	25	23	22	21	15	174(+18*)

^{*}Optional additional Credits leading to Minor/Honours/Honours with Research as applicable

11.3 Options for earning of "Additional Points" for Honours certification

S. No.	Activity	Points	earned	Maximum Limit		
		Percentil	e Points			
		Above 98	8			
1	Success in the GATE Exam	Above 95	6	8 Points		
		Above 90	4			
		Qualified	2			
		SCI Journal				
	Research Publication indexed by	SCOPUS /				
2	SCI / SCOPUS / Web of Science*	Science Jour	rnal: 4	8 Points		
	SCI / SCOI OS / WEB OI SCIENCE	Points				
		Patent: 4 Po	oints			
		Rank	Points			
3	Winning Prestigious Technical	1	4	6 Points		
	Competition at National Level#	2	3	0 i onits		
		3	2			
		Percentile	Points			
4	Completion of PG level MOOCS	Above 95	6	6 Points		
4	Completion of 1 G level MOOCS	Above 90	5	O I OHRIS		
		Above 80	4			
	Total Points Rest	8 Points				

Note: As the activities mentioned in the above Table of 11.3 are aimed at an additional professional dimention to the professional personality of the learners, each Point earned is given 1 credit equivalency. Thus, Honours registered students are allowed to accumulate a maximum of 8 additional Points through these activities, equivalent to two courses (8 credits) of Honours curriculum requirement.

12. Distribution of Courses:

(i) Humanities & Social Sciences including Management (HSM)

Sr.	Course	Curse Code	Course Name	Semester	Credits		
No.	Type						
1.	HSMC 01	U24MH105	English Communicationand	I	2		
			Report Writing				
2.	HSMC 02	U24MB505X	Management course Basket	V	3		
3.	HSMC 03	U24MH508	Technical English	V	1		
	Total:						

^{*}In journals only. Journal to be approved by the BoS chair and Dean AA.

[#]In events approved by the BoS chair and Dean AA.

ii) Basic Science Courses (BSC)

S.No	Course	Course	Course Name	Semester	Credits
	Type	Code			
1.	BSC 01	U24MH101	Differential Calculus and Ordinary Differential Equations.	I	3
2.	BSC 02	U24CY102C	Engineering Chemistry (for Civil Engineering)	I	4
3.	BSC 03	U24MH201	Matrix Theory and VectorCalculus	II	3
4.	BSC 04	U24PY202C	Engineering Physics (for Civil Engineering)	II	4
5.	BSC 05	U24MH301B	Numerical and Statistical Methods (for Civil Engineering)	III	3
	_			Total:	17

iii) Engineering Science Courses (ESC)

Sr. No.	Course	Course	Course Name	Semester	Credits
	Type	Code			
1.	ESC 01	U24CS104	Programming for Problem Solving with C	I	4
2.	ESC 02	U24CE107	Essentials of Civil Engineering	I	2
3.	ESC 03	U24CS204	Data Structures through C	II	4
4.	ESC 04	U24EE205C	Basic Electrical & Electronics Engineering	II	4
5.	ESC 05	U24CS305	Python Programming	III	4
6.	ESC 06	U24CS405	Artificial Intelligence and machine Learning	IV	4
			Total:		22

iv) Program Core Courses (PCC)

Sr. No.	Course	Course	Course Name	Semester	Credits
	Type	Code			
1.	PCC 01	U24CE103	Engineering Mechanics	I	3
2.	PCC 02	U24CE203	Strength of Materials	II	3
3.	PCC 03	U24CE302	Construction Materials	III	4
4.	PCC 04	U24CE303	Surveying	III	4
5.	PCC 05	U24CE304	Mechanics of Materials	III	3
6.	PCC 06	U24CE401	Fluid Mechanics	IV	4
7.	PCC 07	U24CE402	Concrete Technology	IV	4
8.	PCC 08	U24CE403	Theory of Structures	IV	3
9.	PCC 09	U24CE404	Engineering Hydrology	IV	3
10.	PCC 10	U24CE412	Building Planning and Drawing Laboratory	IV	1
11.	PCC 11	U24CE502	Highway Engineering	V	4
12.	PCC 12	U24CE503	Design of Reinforce Concrete Structures	V	3
13.	PCC 13	U24CE504	Soil mechanics	V	4
14.	PCC 14	U24CE602	Design of Steel Structures	VI	4
15.	PCC 15	U24CE603	Estimation and Valuation	VI	3
16.	PCC 16	U24CE604	Environmental Engineering	VI	4
17.	PCC 17	U24CE607	Civil Engineering Software Applications laboratory	VI	1
18.	PCC 18	U24CE703	Structural Design	VII	4
19.	PCC 19	U24CE704	Water Resources and Irrigation Engineering	VII	3

20.	PCC 20	U24CE705	Construction Technology Management	VII	3
				Total:	65

v) Program Elective Courses (PEC)

Sr. No.	Course Type	Course Code	Course Name	Semester	Credits
1.	PEC 01	U24CE601	Program Elective -I / MOOCs-I	VI	3
2.	PEC 02	U24CE702	Program Elective - II/ MOOCs-II	VII	3
3.	PEC 03	U24CE802	Program Elective - III/ MOOCs-IV	VIII	3
4.	PEC 04	U24CE803	Program Elective - IV / MOOCs-V	VIII	3
				Total:	12

vi) Experiential Learning Courses (ELC)

Sr. No.	Course	Course Code	Course Name	Semester	Credits
	Type				
1.	ELC 01	U24EL108	Practicum-1	I	1
2.	ELC 02	U24EL209	Practicum-2	II	1
3.	ELC 03	U24EL308	Practicum-3	III	1
4.	ELC 04	U24EL408	Practicum-4	IV	1
5.	ELC 05	U24CE509	Seminar	V	1
6.	ELC 06	U24CE608	Mini Project	VI	1
7.	ELC 07	U24CE706	Internship Evaluation*	VII	1
8.	ELC 08	U24CE707	Major Project, Phase-1 / Industrial Internship - 1	VII	4
9.	ELC 09	U24CE804	Major Project, Phase – 2 / Industrial Internship - 2	VIII	6
				Total:	17

vii) Indian Knowledge System Courses(IKSC)

Sr. No.	Course Type	Course Code	Course Name	Semester	Credits
1.	IKSC 01	U24SK100	AICTE Mandated Student Induction Programme (Universal Human Values - I)	Ι	0
2.	IKSC 02	U24SK506B	Universal Human Values -II	V	2
3.	IKSC 03	U24SK606A	Essence of Indian Traditional Knowledge	VI	2
	•	•		Total:	4

viii) Multidisciplinary Open Electives Courses (MOPEC)

S. No.	Course	Course Code	Course Name	Semester	Credits
	Type				
1.	MOPEC	U24OE501YYX	MOPEC Elective -I#	V	3
	01				
2.	MOPEC	U24OE701YYX	MOPEC Elective -II	VII	3
	02				
3.	MOPEC	U24OE801YYX	MOPEC Elective -III	VIII	3
	03				
				Total:	09

ix) Value Added Courses (VAC)

Sr. No.	Course	Course	Course Name	Semester	Credits
	Type	Code			
1.	VAC 01	U24VA106	Sports & Yoga	I	1
2.	VAC 02	U24VA109	SEA - I / SAA-1	I	1
3.	VAC 03	U24CY206	Environmental Studies	II	-
4.	VAC 04	U24VA210	SEA-2 / SAA -2	II	1
5.	VAC 05	U24VA306B	Soft & Interpersonal Skills*	III	1
6.	VAC 06	U24VA309	SEA-3 / SAA -3	III	1
7.	VAC 07	U24VA406A	QALR	IV	2
8.	VAC 08	U24VA409	SEA - 4 / SAA - 4	IV	1
				Total:	08

x) Skill Enhancement Courses (SEC)

Sr. No.	Course Type	Course Code	Course Name	Semester	Credits
1.	SEC 01	U24SE208	Programming Skill Development (PSD)Lab - 1	II	1
2.	SEC 02	U24SE307	PSD LAB-02	III	1
3.	SEC 03	U24SE407	PSD-03	IV	1
4.	SEC 04	U24SE507	PSD-04	V	1
				Total:	04

xi) Ability Enhancement Courses (AEC)

Sr. No.	Course Type	Course Code	Course Name	Semester	Credits
1.	AEC 01	U24AE110	Expert Talk Series-1	I	1
2.	AEC 02	U24AE207	IDEA Lab Makerspace	II	1
3.	AEC 03	U24AE211	Expert Talk Series-2	II	1
4.	AEC 04	U24AE310	Expert Talk Series-3	III	1
5.	AEC 05	U24AE410	Expert Talk Series-4	IV	1
6.	AEC 06	U24AE510	Expert Talk Series-5	V	1
7.	AEC 07	U24AE609	Expert Talk Series-6	VI	1
				Total:	07

xii) Startups and Entrepreneurship Courses (STE)

Sr. No.	Course Type	Course Code	Course Name	Semester	Credits
1.	STE	U24ST605X	S&E Basket Basket	VI	3
				Total:	03

Activity Based Learning (ABL) @ Value Added Courses

- •Students are required to earn 4 credits through the first four semesters (2 credits from <u>Social</u> <u>Empowerment Activities-SEA</u> and 2 credits from <u>Self Accomplishment Activities-SAA</u>)
- •If a student is not able to attend/ fulfill performance requirements, he/she shall be dropped from the course and will have to repeat by enrolling in the forthcoming semesters.
- •The Student Activity Centre (SAC) and Centre for Innovation Incubation Research and Entrepreneurship (C-i2RE) shall act as nodal units for activities listed under SEA/SAA.

Social Empowerment Activities - SEA

- These activities are designed to uplift and empower a group or community. The emphasis is on collective benefit, social change, and improving the conditions or capabilities of acommunity or specific group within society.
- These are categorized under four groups namely
 - 1. Swacch Bharat (Clean India)

The aim of activities under Swachh Bharat is to promote cleanliness, hygiene, and sanitation across India.

2. **Shikshit Bharat**(Educated India)

The aim of activities under Shikshit Bharat is to ensure inclusive and equitable qualityeducation for all, promoting lifelong learning opportunities.

3. Samruddha Bharat(Prosperous India)

The aim of activities under Samrudha Bharat is to promote economic growth, self-reliance, and prosperity for all citizens.

4. **Surakshit Bharat**(Safe India)

The aim of activities under Surakshit Bharat is to ensure the safety, security, and well-being of all citizens.

Self-Accomplishment Activities - SAA

- These activities are centered on individual growth, personal development, and self- improvement. The emphasis is on enhancing one's own skills, knowledge, and well-being.
- These are categorized under four groups namely
 - 1. Socho Bharat (Think India)

The aim of activities under Socho Bharat is to foster critical thinking, innovation, and intellectual development among citizens.

2. Sanskarit Bharat (Cultured India)

The aim of activities under Sanskarit Bharat is to preserve, promote, and celebrate India's rich cultural heritage, traditional values, and ethical practices by nurturing morals, fostering social harmony and creating awareness and appreciation of Inda's rich history.

3. Saksham Bharat (Empowered India)

The aim of activities under Saksham Bharat is to empower individuals and communities with the skills, resources, and opportunities needed to achieve self-reliance and economic independence by fostering physical fitness, discipline, teamwork leadership and mental resilience.

4. Sunder Bharat (Beautiful India)

The aim of activities under Sunder Bharat is to enhance the aesthetic and environmental beauty of India, making it a visually pleasing and environmentally sustainable country by emphasizing the importance of culture and heritage.

Table: SEA

Group	Guiding club/ center	Code of activity (U24VAYYY)*	Title of activity			
	,	SE101	Clean India – Green India (River / Beach / Mohalla / School / Campus/ Govt offices Cleaning)			
		SE102	Waste Management/Waste Segregation Surveys			
CEA		SE103	Village Empowerment / NSS camp in village for a week			
SEA Group-1: Swacch	NSS	SE104	Healthy habits-happy schools/Medical camps in schools/peer health			
Bharat		SE105	Lifesaving skills /school clinics /First Aid training for a week			
		SE106	Sustainable living /Surveys and Estimation for roof tops			
		SE110	Any other activity approved by Dean Academic Affairs			
	Humanity Club	SE201	Peer mentoring / Mentoring of School Children			
		SE202	Rural digital revolution / Digital Literacy for yielders & Participation in "Teach-for-India" movement			
SEA		SE203	Empowering learners -schools /Value addition for deprived schools			
Group-2: Shikshit		SE204	Peer Mentoring / Mentoring junior (first year) students at KITSW			
Bharat		SE205	Learning by Teaching /Teaching Assistantship at KITSW/Teaching AIDE			
		SE206	Enriching Education/Development of learning material for schools/ITIs			
		SE210	Any other activity approved by Dean Academic Affairs			
		SE301	Innovation, Business Model & Entrepreneurship			
		SE302	Product Development and Prototyping			
SEA		SE303	Design Thinking/ Critical Thinking & Problem Solving			
Group-3: Samrudd	C-i²RE	SE304	Fundraising and Proposal Writing in Entrepreneurship			
ha Bharat		SE305	Digital Marketing & Branding			
na Dilarat		SE306	Identify a Social Problem & Work on the Solutusing AICTE-IDEA LAB			

		SE307	Meet with Entrepreneurs and Understand Business					
		SE307	Models					
		SE308	Entrepreneurial Case Study Analysis					
		SE310	Any other activity approved by Dean Academic					
		SE310	Affairs					
		SE401	NCC participation/National Integrity					
		SE402	Basics of fire safety/Community safety					
		SE403	Disaster Management					
SEA	NCC	SE404	Environmental health & sustainability					
Group-4:	NCC	SE405	Road safety					
Surakshit		SE406	Pollution control					
Bharat		SF410	Any other activity approved by Dean Academic					
		SE410	Affairs					

Code of each activity shall be: U24VAYYY + activity code of SEA/SAA

Example: U24VAYYYSE101 (for the activity Clean India — Green India (River/Beach/Mohalla/School/Campus/Govt offices Cleaning) under SEA Group1 Swacch Bharath)

Table: SAA

_			Tavic. SAA
Group	Guiding	Code of activity	Title of activity
	club/ center	(U24VAYYY)*	
		SA101	Study of Green & White Revolutions in India
		SA102	Study of any 2 Government Missions or National
		5A102	Policies
SAA		SA103	Study of India's top 2 problems
Group-1:	Literary	SA104	Study of World's top 2 problems
Socho	Club	SA105	Study of one department of the Central/ State
Bharat		5A103	Government
		SA106	Study of one of the identified Books on leadership or
			innovation
		SA110	Any other activity approved by Dean Academic Affairs
		SA201	Values and Ethos of KITSW
		SA202	Philosophy of religion (any)
			Study of Life Management / Kindle Life / Life
SAA		SA203	Empowerment and Enriching Program or any other
Group-2:	Team -		book cited.
Sanskarit	UHV		Study of any of GREAT sons of INDIA (Ex. Gandhi,
Bharat		SA204	Ambedkar, Phule, Savarkar, Sardar Patel, Nehru,
21012010			Shivaji, JRD Tata etc)
		SA205	Harmony in FAMILY & SOCIETY
		SA206	Harmony in NATURE
		SA210	Any other activity approved by Dean Academic Affairs
			Physical Fitness, Self-defence for Women, Target based
		SA301	Physical Exercise for example-Running (Test 5 kms in a
SAA			stretch), Swimming (Test 1 km in a stretch), Walking
Group-3:	Sports		(Test 20 kms in a stretch), Trekking (7days), Cycling
Saksham	Club	SA302	Sports – Representation of Institute at University
Bharat			level/Inter college level and above in ANY sport
		SA303	Pran-vidya (Yoga & Pranayama), Jeevan-vidya (work-
			life balance)

		SA304	Participation in National Tech Fest, AICTE-Hackathon, industry floated global and National competitions, Robocon, BAHA etc			
	Technical club	SA305	Ambassador for events, Student member of regional level committees of Hyderabad section, Organizing committee member in National/Regional/Section level activities for technical societies like ISTE/IEEE/IETE/CSI/SAE etc.			
		SA306	Present research papers at National and international conferences			
		SA310	Any other activity approved by Dean Academic Affairs			
		SA401	Institute representation in prestigious cultural fests/competitions			
		SA402	Dance (Bharatanatyam / Kathak / Lavani / Western Dance). <i>Only for beginners</i>			
SAA	MDF	SA403	Music composition / Learning musical instrument (Any type). <i>Only for beginners</i> .			
Group-4: Sunder Bharat		SA404	Sculptures (focusing on themes of unity, peace and environmental conservation)//Seeing through Painting			
		SA405	Film Appreciation/Dramatics			
	PMC	SA406	Making short film/Photography			
		SA410	Any other activity approved by Dean Academic Affairs			

Code of each activity shall be: U24VAYYY + activity code of SEA/SAA

Example: U24VAYYYSA101 (for the activity Study of Green & White Revolutions in India under SAA Group1 Socho Bharat)

13. SUMMARY OF CURRICULUM COMPONENTS

S.NO.	CATEGORY	CourseComponent	TOTAL COURSES	TOTAL CREDITS	CURRICULUM CONTENT (%OF CREDITS)
1	HSMC	Humanity, Social Sciences and Management Courses	3	6	3.45
2	BSC	Basic Science Courses	5	17	9.77
3	ESC	Engineering Science Courses	6	22	12.64
4	PCC	Program Core Courses	20	65	37.36
5	PEC	Program Elective Courses	4	12	6.90
6	MOPEC	Multidisciplinary Open Elective Courses	3	9	5.17
7	ELC	Experiential Learning Courses	9	17	9.77
8	IKSC	Indian Knowledge System Courses	3	4	2.30
9	VAC	Value Added Courses	8	8	4.60
10	SEC	Skill Enhancement Courses	4	4	2.30
11	AEC	Ability Enhancement Courses	7	7	4.02
12	STE	Startups and Entrepreneurship Courses	1	3	1.72
		Total	73	174	100

KITSW - URR24 B. Tech CE Curriculum Page 26 of 197

				Number o	of Courses	/ Number	of Credits	s (Course C	Category				
Semester		wise)											
	BSC	ESC	HSMC	PCC	MOPEC	PEC	SEC	VAC	ELC	AEC	IKSC	STE	TOTAL
I	2/7	2/6	1/2	1/3				2/2	1/1	1/1	1/0		11/22
II	2/7	2/8		1/3			1/1	2/1	1/1	2/2			11/23
III	1/3	1/4		3/11			1/1	2/2	1/1	1/1			10/23
IV		1/4		5/15			1/1	2/3	1/1	1/1			11/25
V			2/4	3/11	1/3		1/1		1/1	1/1	1/2		10/23
VI				4/12		1/3			1/1	1/1	1/2	1/3	9/22
VII				3/10	1/3	1/3			2/5				7/21
VIII					1/3	2/6			1/6				4/15
Total	5/17	6/22	3/6	20/65	3/9	4/12	4/4	8/8	9*/17	7/7	3/4	1/3	73/174
%													
Weightage	9.77%	12.64%	3.45 %	37.36 %	5.17%	6.90 %	2.30 %	4.60%	9.77%	4.02%	2.30%	1.72%	100 %
of Course	(17/174)	(22/174)	(6/174)	(65/174)	(9/174)	(12/174)	(4/174)	(8/174)	(17/174)	(7/174)	(4/174)	(3/174)	(174/174)
Category													

^{*} Seminar- 1 C , Mini Project- 1 C, Internship Evalution-1C, Major Project: 4+6C

KAKATIYA INSTITUTE OF TECHNOLOGY & SCIENCE Opp: Yerragattu Gutta, Hasanparthy (Mandal), WARANGAL - 506 015, Telangana, INDIA. काकतीय प्रैद्योगिकी एवं विज्ञान संस्थान, वरंगल - ५०६ ०१५ तेलंगाना, भारत కాకతీయ సాంకేతిక విజ్ఞాన శాస్త్ర విద్యాలయం, వరంగల్ - గం౬ ంగగ తెలంగాణ, భారతదేశము

(An Autonomous Institute under Kakatiya University, Warangal) (Approved by AICTE, New Delhi; Recognised by UGC under 2(f) & 12(B); Sponsored by EKASILA EDUCATION SOCIETY)

Scheme of Instructions

B. Tech (CE) - CURRICULUM (KITSW-URR24-CE-R1) SEMESTER-WISE CURRICULUM WITH SCHEME OF INSTRUCTIONS

Abbreviations

L	Lecture Hour	0	Outside the Class Work (Self Study) Hours
T	Tutorial Hour	E	Total Engagement in Hours
P	Practical Hour	С	Credit Assigned

I SEMESTER

Stream - II

Sl.	Cata	Course	Common Wilder		Lectu	res / w	eek		Credits
No.	Category	Code Course Title		L	T	P	О	E	С
	U	24IK100 AICTE	Mandated Student Induction Progr	ramme	(Univ	ersal	Humar	ı Valu	es - I)
1	BSC	U24MH101	Differential Calculus and Ordinary Differential Equations.	2	1	-	6	9	3
2	BSC	U24CY102C	Engineering Chemistry	2	1	2	5	10	4
3	PCC	U24CE103	Engineering Mechanics	2	1	-	4	7	3
4	ESC	U24CE104	Programming for Problem Solving with C	2	1	2	5	10	4
5	HSMC	U24MH105	English Communication and Report Writing	2	-	-	3	5	2
6	VAC	U24VA106	Sports & Yoga	-	-	2	2	4	1
7	ESC	U24CE107	Essentials of Civil Engineering	2	-	-	3	5	2
8	ELC	U24EL108	Practicum-1	-	-	-	4	4	1
9	VAC	U24VA109	SEA - I / SAA-1	-	-	-	2	2	1
10	AEC	U24AE110	Expert Talk Series-1	-	-	-	1	1	1
		12	4	6	35	57	22		
	nmer/ Inter-: A): 1 week to addition								

		Pool - III (Chemistry)			
Sr. No.	Course Code	Course Title			
1.	U24CY102A Engineering Chemistry (for Mechanical Engineering)				
2.	U24CY102B	Engineering Chemistry (Common to CSM, CSD, CSN, CSO & IT)			
3.	U24CY102C	Engineering Chemistry (for Civil Engineering)			

Stream-II

Sl.	Category	Course	Course Title		Lectur	res / v	week		Credits
No.	Category	Code	Course Title	L	T	P	O	E	C
1	BSC	U24MH201	Matrix Theory and Vector Calculus	2	1	-	6	9	3
2	BSC	U24PY202C	Engineering Physics from Pool - I	2	1	2	5	10	4
3	PCC	U24CE203	Strength of Materials	2	1	-	4	7	3
4	ESC	U24CE204	Data Structures through C	2	1	2	5	10	4
5	ESC	U24EE205C	Basic Electrical & Electronics Engineering from Pool - II	2	1	2	5	10	4
6	VAC	U24CY206	Environmental Studies	2	-	-	3	5	-
7	AEC	U24AE207	IDEA Lab Makerspace	-	-	2	2	4	1
8	SEC	U24SE208	Programming Skill Development (PSD) Lab - 1	-	-	2	2	4	1
9	ELC	U24EL209	Practicum-2	-	-	-	4	4	1
10	VAC	U24VA210	SEA-2 / SAA -2	-	-	-	2	2	1
11	AEC	U24AE211	Expert Talk Series-2	-	-	-	1	1	1
	Total:			12	5	10	39	66	23
	Summer/ Inter-sem Bridge Courses (Approved by BoS and Dean,AA): 1 week to 10 days: 1 credit to each Bridge course under additional learning (will be printed on grade sheet)								

		Pool - I (Physics)				
Sr. No.	Course Code	Course Title				
1.	1. U24PY202A Engineering Physics (for Mechanical Engineering)					
2.	U24CY202B	Engineering Physics (Common to CSM, CSD, CSN, CSO & IT)				
3.	U24CY202C	Engineering Physics(for Civil Engineering)				

	Pool -	II (Basic Electrical & Electronics Engineering)
Sr. No.	Course Code	Course Title
1.	U24EE205A	Basic Electrical and Electronics Engineering (for Mechanical Engineering)
2.	U24EE205B	Basic Electrical Engineering (Common to CSM, CSD, CSN, CSO & IT)
3.	U24EE205C	Basic Electrical and Electronics Engineering (for Civil Engineering)

Bridge Courses for exit:

Successful completion of two subjects (6-Credits) during 2-months internship at the institute OR Successful completion of two suitable skill based courses (external) to qualify for Certification

A. After First Year: (UG Certificate in CE)

(i) The candidate should pass any two of the following additional courses (ITI Level) during the 2-Months internship at institute

Exit	Exit Option to Qualify UG Certificate in CE: Any Two (02) Courses during the 2 - Months internship										
S. No.	Category	Course Code	Course Title	L	T	P	0	E	С		
1	PCC	U24CE212X	Fundamentals of Surveying	2	-	2	1	4	3		
2	PCC	U24CE213X	Civil Engineering Materials	2	-	2	1	4	3		
3	PCC	U24CE214X	Construction Practices	2	•	2	-	4	3		
4	PCC	U24CE215X	Any other course approved by BoS Chair and Dean AA	2		2	-	4	3		

(OR)

(ii) Any two suitable skill based courses to qualify for Certification.

Exit	Exit Option to Qualify UG Certificate in CE: Any Two (02) Skill based Courses -:										
S. No.	Category	Course Code	Course Title	L	T	P	o	E	С		
1	SEC	U24SE212X	Drone Technician https://drive.google.com/file/d/1yM QdvaNzw1a 14laKsR9oxl8LrSAmB Ul/view	-	-	6	-	6	3		
2	SEC	U24SE213X	Building Planning and Drawing in3D https://nstihyderabad1.dgt.gov.in/si tes/default/files/2023- 07/Training%20Calendar%202023- 24_compressed.pdf	-	-	6	-	6	3		
3	SEC	U24SE214X	Training in Total Station http://www.geoinstituteoftechnolo gies.in/land-survey-courses-in- hyderabad	-	•	6	•	6	3		
4	SEC	U24SE215X	Land Surveyorhttps://nac.edu.in/long-term-courses/	-	-	6	-	6	3		
5	SEC	U24SE216X	Any other skill based course approved by BoS Chair andDean AA	-	-	6	-	6	3		

Sl.		Course			Lectu	res / v	veek		Credits
No.	Category	Code	Course Title	L	T	P	O	E	С
1	BSC	U24MH301A	Numerical and Statistical Methods (for Civil Engineering)	2	1	•	6	9	3
2	PCC	U24CE302	Construction Materials	2	1	2	5	10	4
3	PCC	U24CE303	Surveying	2	1	2	5	10	4
4	PCC	U24CE304	Mechanics of Materials	2	1	-	4	7	3
5	ESC	U24CE305	Python Programming	2	1	2	5	10	4
6	VAC	U24VA306B	Soft and Interpersonal Skills	2	-	•	2	4	1
7	SEC	U24SE307	PSD LAB-02 (DSC)	-	-	2	2	4	1
8	ELC	U24EL308	Practicum-3	-	-	1	4	4	1
9	VAC	U24VA309	SEA-3 / SAA -3	-	-	-	2	2	1
10	AEC	U24AE310	Expert Talk Series-3	-	-	•	1	1	1
	Total:			12	5	8	36	61	23
	Summer/Inter-sem Bridge Courses (Approved by BoS and Dean, AA): 1 week to 10 days: 1 credit to each Bridge course under additional learning (will be printed on grade sheet)								

* Branch Specific Mathematics:

S. No.	Course Code	Course Title
1.	U24MH301A	Numerical and Statistical Methods (for Civil Engineering)
2.	U24MH301B	Applied Mathematics (Mechanical Engineering)
3.	U24MH301D	Applied Mathematics (Electronics and Communication Engineering)
4.	U24MH301E	Essential Mathematics and Statistics for Machine Learning (AI&ML)
5.	U24MH301F	Essential Mathematics and Statistics for Data Science (Data Science)
6.	U24MH301G	Applied Mathematics (Electrical & Electronics Engineering)

	Value Added Courses (VAC)										
Sr. No.	Course Type	Course Code	Course Name	Semester	Credits						
1.	VAC 01	U24CY106	Sports & Yoga	I	1						
2	VAC 02	U24VA109	SEA - I / SAA-1	I	1						
3	VAC 03	U24VA206	Environmental Studies	II	-						
4	VAC 04	U24VA210	SEA-2 / SAA -2	II	1						
5	VAC 07	U24VA306B	Soft & Interpersonal Skills	III	1						
6	VAC 06	U24VA309	SEA-3 / SAA -3	III	1						
7	VAC 05	U24VA406A	QALR	IV	2						
8	VAC 08	U24VA409	SEA - 4 / SAA - 4	IV	1						

IV SEMESTER

Sl.					Lectu	res / v	week		Credits
No.	Category	Course Code	Course Title	L	Т	P	0	Е	С
1	PCC	U24CE401	Fluid Mechanics	2	1	2	5	10	4
2	PCC	U24CE402	Concrete Technology	2	1	2	5	10	4
3	PCC	U24CE403	Theory of Structures	2	1	-	4	7	3
4	PCC	U24CE404	Engineering Hydrology	2	1	-	4	7	3
5	ESC	U24CE405	Artificial Intelligence & Machine Learning	2	1	2	5	10	4
6	VAC	U24VA406A	Quantitative Aptitude &Logical Reasoning	2	-	-	2	4	2
7	SEC	U24SE407	PSD-03 (Python programing)	ı	-	2	2	4	1
8	ELC	U24EL408	Practicum-4	-	-	-	4	4	1
9	VAC	U24VA409	SEA - 4 / SAA - 4	-	-	-	2	2	1
10	AEC	U24AE410	Expert Talk Series-4	-	-	-	1	1	1
11	VAC*	U24CY411*	Environmental Studies*	2*	1*	-	2*	5*	-
12	PCC	U24CE412	Building Planning and Drawing Laboratory	1	-	2	2	4	1
	Total:					10	36	63	25
Dea	nmer/ Intern, AA): 1 ween addition								

^{*}For Lateral Entry Students Only

	Value Added Courses (VAC)										
Sr. No.	Course Type	Course Code Course Name		Semester	Credits						
1.	VAC 01	U24CY106	Sports & Yoga	I	1						
2	VAC 02	U24VA109	SEA - I / SAA-1	I	1						
3	VAC 03	U24VA206	Environmental Studies	II	-						
4	VAC 04	U24VA210	SEA-2 / SAA -2	II	1						
5	VAC 07	U24VA306B	Soft & Interpersonal Skills	III	1						
6	VAC 06	U24VA309	SEA-3 / SAA -3	III	1						
7	VAC 05	U24VA406A	QALR	IV	2						
8	VAC 08	U24VA409	SEA - 4 / SAA - 4	IV	1						

Bridge Courses for exit:

Successful completion of two subjects (6-Credits) during 2-months internship at the institute OR Successful completion of two suitable skill based courses (external) to qualify for Certification

B. After Second Year: (UG Diploma in CE)

(i) The candidate should pass any two of the following additional courses (Diploma Level) during the 2-Months internship at institute

Exit Op	Exit Option to Qualify UG Diploma in CE: Any Two (02) Courses during the 2 - Months internship										
S. No.	Category	Course Code	Course Title	L	T	P	o	Е	С		
1	PCC	U24CE413X	Transportation Engineering	2	-	2	-	4	3		
2	PCC	U24CE414X	Environmental Engineering	2	-	2	-	4	3		
3	PCC	U24CE415X	Design, detailing and drawings of structures	2	-	2	-	4	3		
4	PCC	U24EC416X	Any other course approved by BoS Chair and Dean AA	2	-	2	-	4	3		

(OR)

Any two suitable skill based courses to qualify for Diploma.

Exit	Exit Option to Qualify UG Diploma in CE: Any Two (02) Skill based Courses -:								
S. No.	Category	Course Code	Course Title	L	Т	P	О	E	C
1	SEC	U24SE413X	Certificate Course in Civil Structure https://www.citdindia.org/images/p df/UPDATED-CAD-CAM-CAE- COURSES-DETAILS.pdf	-	-	6	-	6	3
2	SEC	U24SE414X	3DS MAX&REVIT STRUCTURE https://www.citdindia.org/images/p df/UPDATED-CAD-CAM-CAE- COURSES-DETAILS.pdf	-	-	6	-	6	3
3	SEC	U24SE415X	Highway Works Supervisor https://nac.edu.in/long-term-courses/	•	-	6	-	6	3
4	SEC	U24SE416X	Training in DGPS http://www.geoinstituteoftechnolo gies.in/land-survey-courses-in- hyderabad	,	•	6	1	6	3
5	SEC	U24SE417X	Any other skill based course approved by BoS Chair and DeanAA		-	6	-	6	3

B. Tech Honours with Research:

Students opting for B. Tech Honours with Research, shall undergo a 2-Month Mandatory Research Internship-I (5 Credits) at respective department during the summer vacation after IV Semester.

Sl.			o mu		Credits				
No.	Category	Course Code	Course Title	L	T	P	0	E	С
1	МОРЕС	U240E501YYX	MOPEC Elective –I#	2	1	-	3	6	3
2	PCC	U24CE502	Highway Engineering	2	1	2	5	10	4
3	PCC	U24CE503	Design of Reinforced Concrete Structures	2	1	-	4	7	3
4	PCC	U24CE504	Soil Mechanics	2	1	2	5	10	4
5	HSMC	U24MB505X	Management Course Basket	2	1	-	2	5	3
6	IKSC	U24SK506B	Universal Human Values -II	2	-	-	2	4	2
7	SEC	U24SE507	PSD-04 (AI&ML Domain lab)	1	-	2	2	4	1
8	HSMC	U24MH508	Technical English	•	-	2	2	4	1
9	ELC	U24EC509	Seminar	ı	-	-	2	2	1
10	AEC	U24AE510	Expert Talk Series-5	-	-	-	1	1	1
	Total:					8	28	53	23
Additional Learning@:Maximum credits allowed for Honours /Minor					-	-	-	-	5
Total credits for Honours /Minor students:					-	-	-	-	28
and cou	Summer/ Inter-sem Bridge Courses (Approved by BoS and Dean, AA): 1 week to 10 days: 1 credit to each Bridge course under additional learning (will be printed on grade sheet)								

#MULTIDISCIPLINARY OPEN ELECTIVES: Student has to select one course as multidisciplinary open elective from any of the MOPEC Basket of courses offered by other departments.

[®]List of courses for additional learning through MOOCs towards Honours/Minor in Engineering shall be prescribed by the department under Honours/ Minor Curricula

	Management Courses Basket						
Sr. No. Course Code Course Title							
1.	U24MB505A	Managerial Economics and Accountancy					
2.	U24MB505B	Industrial Psychology					
3.	U24MB505C	E-Commerce and Digital Marketing					
4.	U24MB505D	Organizational Behaviour					
5.	U24MB505Z	Any other course approved by BoS Chair and Dean AA					

^{*} Dean AA will allot the courses S&E Basket (Stream-I), Management Course Basket (Stream-II), to the branches as per Stream-I and Stream-II.

Sl.	Catagory	Course Code	Course Title	Lectures / week					Credits
No.	Category	Course Code	Course Title	L	T	P	0	E	С
1	PEC	U24CE601	Program Elective -I / MOOCs-I	2	1	-	4	7	3
2	PCC	U24CE602	Design of Steel Structures	2	1	2	4	9	4
3	PCC	U24CE603	Estimation & Valuation	2	1	-	4	7	3
4	PCC	U24CE604	Environmental Engineering	2	1	2	5	10	4
5	STE	U24ST605X	Startups & Entrepreneurship Basket	2	1	-	2	5	3
6	IKSC	U24SK606A	Essence of Indian Traditional Knowledge	2	-	-	2	4	2
7	PCC	U24CE607	Civil Engineering Software Applications Lab	1	-	2	2	4	1
8	ELC	U24CE608	Mini Project	-		2	2	4	1
9	AEC	U24AE609	Expert Talk Series-6	-	•	-	1	1	1
	Total:					8	26	51	22
Additional Learning@:Maximum credits allowed for Honours /Minor					-	-	-	-	5
Total	Total credits for Honours /Minor students:					-	-	-	27
Dea	Summer/ Inter-sem Bridge Courses (Approved by BoS and Dean, AA): 1 week to 10 days: 1 credit to each Bridge course under additional learning (will be printed on grade sheet)								

#MULTIDISCIPLINARY OPEN ELECTIVES: Student has to select one course as multidisciplinary open elective from any of the MOPEC Basket of courses offered by other departments.

B. Tech Honours with Research:

Students opting for B. Tech Honours with Research, shall undergo a 2-Month Mandatory Research Internship-II (5 Credits) at respective department during the summer vacation after VI Semester.

	Startups & Entrepreneurship Basket							
Sr.No.	Sr.No. Course Code Course Title							
1.	U24ST605A	Design Thinking						
2.	U24ST605B	Innovative Product Design and Development						
3.	U24ST605C	Entrepreneurship						
4.	U24ST605D	Design Studio						
5.	U24ST605Z	Any other course approved by BoS Chair and Dean AA						

[®]List of courses for additional learning through MOOCs towards Honours/Minor in Engineering shall be prescribed by the department under Honours/ Minor Curricula

Bridge Courses for exit:

Successful completion of two subjects (6-Credits) during 2-months internship at the institute

)R

Successful completion of two suitable skill based courses (external) to qualify for Certification <u>C. After Third Year: (B. Voc. in CE)</u>

(i) The candidate should pass any two of the following additional courses (Degree Level) during the 2-Months internship at institute

Exit	Exit Option to Qualify B. Voc in CE: Any Two (02) Courses during the 2 - Months internship									
S. No.	Category	Course Code	Course Title	L	T	P	o	E	С	
1	PCC	U24CE610X	Engineering Geology	2	-	2	-	4	3	
2	PCC	U24CE611X	Advanced Concrete Technology	2	-	2	-	4	3	
3	PCC	U24CE612X	Traffic Engineering	2	-	2	-	4	3	
4	PCC	U24CE613X	Any other course approved by BoS Chair and Dean AA	2	-	2	-	4	3	

(OR)

(ii) Any two suitable skill based courses to qualify for B. Voc in CE Degree.

Exit	Exit Option to Qualify B. Voc in CE: Any Two (02) Skill based Courses -:								
S. No.	Category	Course Code	Course Title	L	Т	P	o	Е	С
1	SEC	U24SE610X	Finishing School program for fresh Civil Engineering Graduates https://nac.edu.in/finishing-school/	-	-	6	-	6	3
2	SEC	U24SE611X	Digital Photogrammetry and Remotesensing - https://www.surveyofindia.gov.in/ pages/courses-offered	-	-	6	-	6	3
3	SEC	U24SE612X	Practical Aspects of Construction Management (PACM) - Site Engineer (Construction Management Training Institute - https://cmti.co.in/civil- engineering-certification- courses.html	•	•	6	-	6	3
4	SEC	U24SE613X	NITI Aayog Internship - https://www.niti.gov.in/internship	ı	-	6	-	6	3
5	SEC	U24SE614X	Any other skill based course approved by BoS Chair andDean AA	-	-	6	-	6	3

(Note to HoDs on PCC: Under PCC the departments shall plan appropriate courses up to 6^{th} semester covering GATE syllabus).

Sl.		Course Code	C Will]	Credits				
No.	Category	Course Code	Course Title	L	T	P	0	E	С
1	МОРЕС	U240E701YYX	MOPEC Elective –II	2	1	-	3	6	3
2	PEC	U24CE702	Program Elective - II/ MOOCs-II	2	1	•	4	7	3
3	PCC	U24CE703	Structural Design	2	1	2	4	9	4
4	PCC	U24CE704	Water Resources and Irrigation Engineering	2	1	-	4	7	3
5	PCC	U24CE705	Construction Technology and Management	2	1	ı	4	7	3
6	ELC	U24CE706	Internship Evaluation*	-	-	2	-	2	1
7	7 ELC U24CE707 Major Project, Phase-1 / Industrial Internship - 1				-	8	6	14	4
		10	5	12	25	52	21		
Additional Learning@: Maximum credits allowed for Honours/Minor					-	•	-	-	4
Total	Total credits for Honours/Minor students:					-	-	-	25

#MULTIDISCIPLINARY OPEN ELECTIVES: Student has to select one course as multidisciplinary open elective from any of the MOPEC Basket of courses offered by other departments.

@ List of courses for additional learning through MOOCs towards Honours /Minor in Engineering shall be prescribed by the department under Honours / Minor Curricula

B. Tech Honours with Research

Students opting for B. Tech Honours with Research, shall complete Research Methodology Course (4 Credits) through MOOCS (OR) a workshop / FDP of not less than one week on "Research Methodologies" (4 Credits).

Internship Evaluation for the students opting B. Tech Honours with Research, will be done during 2- Month Research Internship-II.

VIII SEMESTER

Sl.	Cata	Course Code Course Title		Lectu	res / v	week		Credits	
No.	Category		Course Tide	L	T	P	0	E	С
1	МОРЕС	U240E801YYX	MOPEC Elective –III	2	1	-	3	6	3
2	PEC	U24CE802 Program Elective - III / MOOCs-IV			1	-	4	7	3
3	PEC	U24CE803	Program Elective - IV / MOOCs-V	2	1	-	4	7	3
4	ELC	U24CE804	Major Project, Phase – 2 / Industrial Internship - 2	1	-	12	4	16	6
			Total:	6	3	12	15	36	15
	Additional Learning@:Maximum credits allowed for Honours /Minor					•	•	•	4
Total	Total credits for Honours /Minor students:					-	-	-	19

#MULTIDISCIPLINARY OPEN ELECTIVES: Student has to select one course as multidisciplinary open elective from any of the MOPEC Basket of courses offered by other departments.

@ List of courses for additional learning through MOOCs towards Honours /Minor in Engineering shallbe prescribed by the department under Honours / Minor Curricula

B. Tech Honours with Research

Students opting for B. Tech Honours with Research, shall Publish a research paper in reputed journal indexed by SCI / SCOPUS/Web of Science (4 Credits).

SUMMARY

SEMESTER	I	II	III	IV	V	VI	VII	VIII	TOTAL
CREDITS	22	23	23	25	23	22	21	15	174

MULTIDISCIPLINARY OPEN ELECTIVE COURSES (MOPEC) BASKETS:

There are three slots for MOPEC Courses (5th, 7th& 8th semesters). Students can opt any four courses (one course per semester under MOPEC slot) from the available 14 MOPEC Baskets.

Students those who opt open elective courses will be thinking to get introduced to the courses other than their program courses to start rooting their professional goals in their breadth component of study to explore the jobs in different fields. Hence the department shall carefully offer courses under the MOPEC Basket which create interest and impart basic knowledge and skills across the domains. For example the CS/IT MOPEC basket shall consist of courses like Introduction to AI&ML, Intro to web programming, Intro to Computer Networking, Intro to Operating Systems, etc.

Course code to be followed for all MOPEC courses:

U	2	4	О	Е	Х	0	1	С	Е	A
URR2	24 Cur	riculum	MO: Elect	PEC tive	Semesterin whichMOPEC opted (5/6/7)	1st Sui in tha Seme	nt	MOF offere CE D	ed by	Serial Order

(I) CIVIL ENGINEERING: CE-MOPEC BASKET

The following Courses will be offered by Civil Engineering Department under MOPECbasket to the students of other branches:

V/VII/	VIII SEMESTER	
1	U24OEX01CEA	Engineering Mechanics
2	U24OEX01CEB	Strength of Materials
3	U24OEX01CEC	Fluid Mechanics
4	U24OEX01CED	Advanced Surveying
5	U24OEX01CEE	Energy Efficient Buildings
6	U24OEX01CEF	Net Zero Buildings
7	U24OEX01CEG	Forensic Engineering
8	U24OEX01CEH	Smart and Resilient Buildings
9	U24OEX01CEI	Infrastructure Engineering & Management
10	U24OEX01CEJ	Disaster Response & Preparedness
11	U24OEX01CEK	Introduction to Sustainable Development
12	U24OEX01CEL	Lifeline Services & Disasters
13	U24OEX01CEZ	Any other course approved by BoS Chair and Dean AA

(II) MECHANICAL ENGINEERING: ME-MOPEC BASKET

The following Courses will be offered by Mechanical Engineering Department under MOPEC basket to the students of other branches:

V/VII/	VIII SEMESTER	
1	U24OEX01MEA	3D Printing Technologies
2	U24OE X01MEB	Joy of Mechanical Engineering
3	U24OE X01MEC	Introduction to Engineering Design
4	U24OE X01MED	Research Methodology
5	U24OE X01MEE	Thermal Science & Engineering
6	U24OEX01MEF	Automotive Pollution & Control
7	U24OEX01MEG	Applications of AI/ML in Mechanical Engineering
8	U24OEX01MEH	Computer Integrated Manufacturing
9	U24OEX01MEI	Elements of Automobile Engineering
10	U24OEX01MEJ	Finite Element Methods for Engineers
11	U24OEX01MEK	Design of Heat transfer equipment
12	U24OEX01MEL	Alternate Fuels
13	U24OEX01MEM	Digital Manufacturing
14	U24OEX01MEN	Industrial Engineering
15	U24OEX01MEO	Robotics Engineering
16	U24OEX01MEP	Composite Materials
17	U24OEX01MEQ	Jet Propulsion and Rocketry
18	U24OEX01MER	Cooling of Electronic Devices and circuits
19	U24OEX01MEZ	Any other course approved by BoS Chair and Dean AA

(III) ECE: EC -MOPEC BASKET

The following Courses will be offered by ECE and ECI Departments under MOPEC basket to the students of other branches:

V/VII/	/VIII SEMESTER	
1	U24OEX01ECA	Analog and Digital Electronics
2	U24OEX01ECB	Digital Electronics
3	U24OEX01ECC	Signals and Systems
4	U24OEX01ECD	Computer Architecture and Organization
5	U24OEX01ECE	Embedded System Design
6	U24OEX01ECF	Microprocessor and Microcontrollers
7	U24OEX01ECG	Linear Integrated Circuits
8	U24OEX01ECH	Digital Image Processing
8	U24OEX01ECI	Principles of Communication Systems
10	U24OEX01ECJ	Digital Signal Processing and Applications
11	U24OEX01ECK	Basic VLSI Design
12	U24OEX01ECL	Radar Engineering
13	U24OEX01ECM	Optical Communications and Networks
14	U24OEX01ECN	Wireless and Mobile Communications
15	U24OEX01ECO	Satellite Communications
16	U24OEX01ECP	Wireless Sensor Networks
17	U24OEX01ECQ	Microwave Communications
18	U24OEX01ECR	Introduction to Nanotechnology
19	U24OEX01ELZ	Any other course approved by BoS Chair and Dean AA

(IV) ECI: CI-MOPEC BASKET

The following Courses will be offered by ECI Departments under MOPEC basket to the students of other branches:

V/VII/	VIII SEMESTER	
1	U24OEX01CIA	Fundamentals of Instrumentation
2	U24OEX01CIB	Switching Theory and Logic Design
3	U24OEX01CIC	Signals and Systems
4	U24OEX01CID	Digital Signal Processing and Applications
5	U24OEX01CIE	Sensors and Actuators
6	U24OEX01CIF	Fundamentals of VLSI
7	U24OEX01CIG	LabVIEW Programming
8	U24OEX01CIH	PLC and DCS
8	U24OEX01CII	Microcontrollers and Applications
10	U24OEX01CIJ	Internet of Things
11	U24OEX01CIK	Non - Destructive Testing
12	U24OEX01CIZ	Any other course approved by BoS Chair and Dean AA

(V) CSE: CS-MOPEC BASKET

The following Courses will be offered by CSE Departments under MOPEC basket to the students of other branches:

2 4101	businest to the state into or other bruneres.						
V/VII/	VIII SEMESTER						
1	U24OEX01CSA	Operating Systems					
2	U24OEX01CSB	Design and Analysis of Algorithms					
3	U24OEX01CSC	Software Engineering					
4	U24OEX01CSD	Compiler Design					
5	U24OEX01CSE	Data Mining					
6	U24OEX01CSF	Cryptography & Network Security					
7	U24OEX01CSG	High Performance Computing					
8	U24OEX01CSH	Software Quality Assurance & Testing					
9	U24OEX01CSZ	Any other course approved by BoS Chair and Dean AA					

(VI) IT ENGINEERING: IT-MOPEC BASKET

The following Courses will be offered by IT Departments under MOPEC basket to the students of other branches:

V/VII/	VIII SEMESTER					
1	U24OEX01ITA	Computer Networks				
2	U24OEX01ITB	Ethical hacking				
3	U24OEX01ITC	Programming with C++				
4	U24OEX01ITD	Web Design Technologies				
5	U24OEX01ITE	Software Project Management				
6	U24OEX01ITF	Java Full stack development				
7	U24OEX01ITG	DevOps				
8	U24OEX01ITH	NET Programming				
9	U24OEX01ITI	Software Testing and Quality Assurance				
10	U24OEX01CSZ	Any other course approved by BoS Chair and Dean AA				

(VII) ELECTRICAL ENGINEERING: EE-MOPEC BASKET

The following Courses will be offered by EEE Department under MOPEC basket to the students of other branches:

V/VII/	V/VII/VIII SEMESTER		
1	U24OEX01EEA	Linear Control Systems	
2	U24OEX01EEB	Introduction to Electric Vehicles	
3	U24OEX01EEC	Renewable Energy Systems	
4	U24OEX01EED	Smart Electric Grid	
5	U24OEX01EEE	Generation & Utilisation of Electric Energy	
6	U24OEX01EEF	Energy Auditing	
7	U24OEX01EEG	Network Analysis and Synthesis	
8	U24OEX01EEH	Power Electronics	
9	U24OEX01EEZ	Any other course approved by BoS Chair and Dean AA	

(VIII) CSE (DATA SCIENCE): DS-MOPEC BASKET

The following Courses will be offered by CSE(D) Department under MOPEC basket to the students of other branches:

V/VII/	V/VII/VIII SEMESTER		
1	U24OEX01DSA	Exploratory Data Analysis with R Programming	
2	U24OEX01DSB	Predictive Analytics and Data Mining	
3	U24OEX01DSC	Big data Analytics	
4	U24OEX01DSD	Machine Learning	
5	U24OEX01DSE	Deep Learning	
6	U24OEX01DSF	Data Visualization	
7	U24OEX01DSG	Social and Information Network Analysis	
8	U24OEX01DSH	Web Scraping with Python	
9	U24OEX01DSI	Introduction to MLOps	
10	U24OEX01DSZ	Any other course approved by BoS Chair and Dean AA	

(IX) CSE (AM&ML) : AI-MOPEC BASKET

The following Courses will be offered by the CSE(AM&ML) Department underMOPEC basket to the students of other branches:

V/VII/	V/VII/VIII SEMESTER		
1	U24OEX01AIA	Artificial Intelligence	
2	U24OEX01AIB	Machine Learning	
3	U24OEX01AIC	Deep Learning	
4	U24OEX01AID	Computer Vision and Image Processing	
5	U24OEX01AIE	Natural Language Processing	
6	U24OEX01AIF	Exploratory Data Analysis with Python	
7	U24OEX01AIG	Robotic Process Automation	
8	U24OEX01AIH	Prompt Engineering for Generative AI	
9	U24OEX01AII	MLOps Architecture for LLMs	
10	U24OEX01AIZ	Any other course approved by BoS Chair and Dean AA	

(X) CSE (NETWORKS): CN-MOPEC BASKET

The following Courses will be offered by CSE(N) Department under MOPEC basket to the students of other branches:

V/VII/	V/VII/VIII SEMESTER		
1	U24OEX01CNA	Computer Networks	
2	U24OEX01CNB	Cloud Computing	
3	U24OEX01CNC	Block Chain Technologies	
4	U24OEX01CND	Internetworks and Virtualization	
5	U24OEX01CNE	Network Automation	
6	U24OEX01CNF	Platforms and System Security	
7	U24OEX01CNG	Data Centre Networking	
8	U24OEX01CNH	Fundamentals of Cyber Security & Tools	
9	U24OEX01CNI	SDN for real networks	
10	U24OEX01CNZ	Any other course approved by BoS Chair and Dean AA	

(XI) CSE (IOT): IN-MOPEC BASKET

The following Courses will be offered by CSE (IOT) Department under MOPEC basketto the students of other branches:

V/VII/	V/VII/VIII SEMESTER		
1	U24OEX01INA	Programming with IoT boards	
2	U24OEX01INB	Python for IoT	
3	U24OEX01INC	IoT Architecture and Protocols	
4	U24OEX01IND	Artificial IoT	
5	U24OEX01INE	IoT frameworks	
6	U24OEX01INF	IIoT	
7	U24OEX01ING	Cyber Physical Systems	
8	U24OEX01INH	Privacy & Security for IoT	
9	U24OEX01INI	Edge and fog computing	
10	U24OEX01INZ	Any other course approved by BoS Chair and Dean AA	

(XII) MATHEMATICS: MT-MOPEC BASKET

The following Courses will be offered by M&H Department under MOPEC basket to the students of all branches:

V/VII/	V/VII/VIII SEMESTER		
1	U24OEX01MTA	Operations Research	
2	U24OEX01MTB	Computational Number Theory	
3	U24OEX01MTC	Integral Equations & Integral Transforms	
4	U24OEX01MTD	Fuzzy Set Theory and Its Applications	
5	U24OEX01MTE	Complex Analysis and Applications	
6	U24OEX01MTF	Discrete Mathematics and Graph Theory	
7	U24OEX01MTA	Partial Differential Equations and Applications	
8	U24OEX01MTB	Probability Theory and Stochastic Processes	
9	U24OEX01MTC	Descriptive Statistics with R software	

10	U24OEX01MTD	Numerical Linear Algebra
11	U24OEX01MTE	Applied Linear Algebra in AI and ML
12	U24OEX01MTF	Matrix Computation and Applications
13	U24OEX01MTA	Reliability Theory
14	U24OEX01MTB	Numerical Methods for Partial Differential Equations
15	U24OEX01MTZ	Any other course approved by BoS Chair and Dean AA

(XIII) ENGLISH: EN-MOPEC BASKET

The following Courses will be offered by M&H Department under MOPEC basket to the students of all branches:

V/VII/	VIII SEMESTER	
1	U24OEX01ENA	Creative Writing
2	U24OEX01ENB	Public Speaking
3	U24OEX01ENC	Conversational English
4	U24OEX01END	Exam Skills
5	U24OEX01ENE	English for Competitive Examinations
6	U24OEX01ENF	Comprehensive Reading
7	U24OEX01ENG	Corporate Writing
8	U24OEX01ENH	Scientific English
9	U24OEX01ENI	Foundation for IELTS/TOEFL
10	U24OEX01ENJ	Narrative Skills
11	U24OEX01ENK	Professional Writing
12	U24OEX01ENL	English Language Enhancement
13	U24OEX01ENZ	Any other course approved by BoS Chair and Dean AA

(XIV) PHYSICS: PY-MOPEC BASKET

The following Courses will be offered by PS Department under MOPEC basket to the students of all branches:

V/VII/	V/VII/VIII SEMESTER		
1	U24OEX01PYA	Science and Technology of Non-Conventional Energy	
2	U24OEX01PYB	Laser Systems for Industrial and Engineering Applications	
3	U24OEX01PYC	Optical Fiber Communication	
4	U24OEX01PYD	Nanomaterials	
5	U24OEX01PYE	Fundamentals of Electromagnetism	
6	U24OEX01PYF	Solid State Physics	
7	U24OEX01PYG	Modern Materials	
8	U24OEX01PYH	Experimental Physics	
9	U24OEX01PYI	Thermodynamics	
10	U24OEX01PYZ	Any other course approved by BoS Chair and Dean AA	

(XV) CHEMISTRY: CY-MOPEC BASKET

The following Courses will be offered by PS Department under MOPEC basket to the students of all branches:

V/VII/	V/VII/VIII SEMESTER		
1	U24OEX01CYA	Nano Bio-Technology	
2	U24OEX01CYB	Computational Chemistry	
3	U24OEX01CYC	Biosensors and Applications	
4	U24OEX01CYD	Fundamentals of Quantum Chemistry	
5	U24OEX01CYE	Stereochemistry	
6	U24OEX01CYF	Advanced Polymer Chemistry	
7	U24OEX01CYG	Principles and Applications of NMR Spectroscopy	
8	U24OEX01CYH	Organic Reaction Mechanisms	
9	U24OEX01CYI	Basic Organic Chemistry	
10	U24OEX01CHZ	Any other course approved by BoS Chair and Dean AA	

(XVI) COMMERCE & MANAGEMENT : CM-MOPEC BASKET

The following Courses will be offered by MBA Department under MOPEC basket to the students of all branches:

V/VII/	V/VII/VIII SEMESTER		
1	U24OEX01CMA	Principles of Accountancy	
2	U24OEX01CMB	Finance for Engineers	
3	U24OEX01CMC	Management Principles	
4	U24OEX01CMD	Organizational Behavior	
5	U24OEX01CME	Project Management	
6	U24OEX01CMF	Operations Management	
7	U24OEX01CMG	Consumer Psychology	
8	U24OEX01CMH	Principles of Marketing Management	
9	U24OEX01CMZ	Any other course approved by BoS Chair and Dean AA	

(XVII) LIBERAL ARTS*: LI-MOPEC BASKET

Students opting Liberal Art courses under MOPEC shall complete the courses through SWAYAM / NPTEL or any other MOOCS platform:

V/VII/	VIII SEMESTER	
1	U24OEX01LIA	Indian Language-I
2	U24OEX01LIB	Indian Language-II
3	U24OEX01LIC	Psychology for Well-Being
4	U24OEX01LID	Foreign Language-I
5	U24OEX01LIE	Foreign Language-II
6	U24OEX01LIF	Introduction to Indian Art -An Appreciation
7	U24OEX01LIG	Drama Appreciation
8	U24OEX01LIH	Cultural Studies
9	U24OEX01LII	Film Appreciation
10	U24OEX01LIJ	Ethics in Engineering Practice
11	U24OEX01LIZ	Any other course approved by BoS Chair and Dean AA

^{*} Through MOOCS only

(XVIII) ARTS*: AR-MOPEC BASKET

Students opting Arts courses under MOPEC shall complete the courses through SWAYAM / NPTEL or any other MOOCS platform:

V/VII/	VIII SEMESTER	
1	U24OEX01ARA	Anthropology
2	U24OEX01ARB	Ancient India
3	U24OEX01ARC	Constitution of INDIA
4	U24OEX01ARD	Medieval India
5	U24OEX01ARE	Geography
6	U24OEX01ARF	Modern India
7	U24OEX01ARG	Indian Polity
8	U24OEX01ARH	Indian Economy
9	U24OEX01ARZ	Any other course approved by BoS Chair and Dean AA

^{*} Through MOOCS only

(XIX) LAW*: LW-MOPEC BASKET

Students opting Laws courses under MOPEC shall complete the courses through SWAYAM / NPTEL or any other MOOCs platform:

V/VII/	VIII SEMESTER	-
1	U24OEX01LWA	Law for Engineers
2	U24OEX01LWB	Environmental Law
3	U24OEX01LWC	Labour Law
4	U24OEX01LWD	IPR and Patent Law
5	U24OEX01LWE	Industrial Law
6	U24OEX01LWF	Company Law
7	U24OEX01LWG	Administrative Law
8	U24OEX01LWH	Alternative Dispute Resolution
9	U24OEX01LWZ	Any other course approved by BoS Chair and Dean AA

(XX) I²RE: IE-MOPEC BASKET

Students opting I²RE courses under MOPEC shall complete the courses through SWAYAM / NPTEL or any other MOOCS platform:

V/VII/	VIII SEMESTER	
1	U24OEX01IEA	Understanding Incubation & Entrepreneurship
2	U24OEX01IEB	Innovation, Business Models & Entrepreneurship
3	U24OEX01IEC	Innovation & Startup Policy
4	U24OEX01IED	Entrepreneurship & IP Strategies
5	U24OEX01IEE	Digital Marketing Strategies
6	U24OEX01IEF	Leadership, Innovation and Entrepreneurship
7	U24OEX01IEG	Economics of Innovation
8	U24OEX01IEH	Strategic Management
9	U24OEX01IEI	Social Innovation in Industry 4.0
10	U24OEX01IEJ	Design, Technology & Innovation
11	U24OEX01IEZ	Any other course approved by BoS Chair and Dean AA

Department of Civil Engineering

PROGRAM ELECTIVE COURSES (PEC)

There are four slots allotted to Program Elective Courses (PECs). An example for CE is given below: Each major specialization of the B. Tech. Programme is treated as a vertical.

VERTICAL/ PE	PE1	PE2	PE3	PE4
	U24CE601A:	U24 CE 702A:	U24CE 802A:	U24CE 803A:
	Advanced	Advanced	Sustainable Materials	Repair &
Vertical 1:	Analysis of	Concrete	& Green Buildings	Rehabilitation of
Structural	Structures	Technology		Structures
Engineering		(O	R)	
	Equival	lent MOOC approved	l by BoS Chair and Dean A	1A
	U24CE601B:			U24CE803B:
	Traffic	U24CE702B:	U24CE802B:	Pavement Material
Martinal O.	Engineering&	PavementDesign	Railway Engineering	Characterization
Vertical 2: Transportation	Management			
Engineering		(O	R)	
Liighteering			l by BoS Chair and Dean A	
	U24CE601C:	U24CE702C:	U24CE802C:	U24CE803C:
	Foundation	Ground	Earth Retaining	Soil Dynamics
Vertical 3:	Engineering	Improvement	Structures	and Machine
Geotechnical		Techniques	(2.7)	Foundation
Engineering	.		(OR)	
			l by BoS Chair and Dean A	
	U24CE601D:	U24CE702D:	U24CE802D:	U24CE803D:
Vertical 4:	Life Cycle	Hydraulic	Remote Sensing &	
Water &	Assessment	Structures	Geographical	Management
Environmental			Information Systems	
Engineering		1 (1)(0)(2)	(OR)	A A
	,		d by BoS Chair and Dean A	
Vertical 5:	U24CE601E:	U24CE702 E:	U24CE802E:	U24CE803E:
Design of	Pre-stressed	Structural	Earthquake	Bridge Engineering
Special	Concrete	Dynamics	Engineering.	
Structures			(OR)	
			d by BoS Chair and Dean 1	
	U24CE601F:	U24CE702F:	U24CE802F:	U24CE803F:
	OOP through	Advanced Data	Introduction to Data	IOT applications
Vertical 6:	Java	Structures	Bases	inCivil
Advanced				Engineering
Software			(OD)	
	E	nuizalant MOOC am	(OR) wooned by RoS Chair and D	ingan A A
	Εl	jutoutent MOOC app	proved by BoS Chair and D	eun AA

KAKATIYA INSTITUTE OF TECHNOLOGY & SCIENCE

Opp: Yerragattu Gutta, Hasanparthy (Mandal), WARANGAL - 506 015, Telangana, INDIA. काकतीय प्रैद्योगिकी एवं विज्ञान संस्थान, वरंगल - ५०६ ०१५ तेलंगाना, भारत కాకతీయ సాంకేతిక విజ్ఞాన శాస్త్ర విద్యాలయం, వరంగల్ - ಸಂ೭ ೦೧೫ ತಲಂಗಾಣ, ಭಾರತದೆತಮ

(An Autonomous Institute under Kakatiya University, Warangal)

(An Autonomous Institute under Kakatiya University, warangat)

KITSW (Approved by AICTE, New Delhi; Recognised by UGC under 2(f) & 12(B); Sponsored by EKASILA EDUCATION SOCIETY)

Semester -I Syllabi

Stream - II

Sl.	Sl. Category Course Course Title		Common Wilder		Lectur	Credits			
No.	Category	Code	Course little	L	T	P	О	Е	C
	U	24IK100 AICTE	Mandated Student Induction Progr	ramme	(Univ	ersal	Humai	ı Valu	es - I)
1	BSC	U24MH101	Differential Calculus and Ordinary Differential Equations.	2	1	-	6	9	3
2	BSC	U24CY102C	Engineering Chemistry	2	1	2	5	10	4
3	PCC	U24CE103	Engineering Mechanics	2	1	-	4	7	3
4	ESC	U24CE104	Programming for Problem Solving with C		1	2	5	10	4
5	HSMC	U24MH105	English Communication and Report Writing	2	-	-	3	5	2
6	VAC	U24VA106	Sports & Yoga	ı	-	2	2	4	1
7	ESC	U24CE107	Essentials of Civil Engineering	2	-	-	3	5	2
8	ELC	U24EL108	Practicum-1	-	-	-	4	4	1
9	VAC	U24VA109	SEA - I / SAA-1	-	-	-	2	2	1
10	AEC	U24AE110	Expert Talk Series-1	-	-	-	1	1	1
			Total:	12	4	6	35	57	22
	Summer/Inter-Sem Bridge Courses (Approved by BoS and Dean, AA): 1 week to 10 days: 1 credit to each Bridge course under additional learning (will be printed on grade sheet)								

	Pool - III (Chemistry)									
Sr. No. Course Code Course Title										
1.	U24CY102A	Engineering Chemistry (for Mechanical Engineering)								
2.	U24CY102B	Engineering Chemistry (Common to CSM, CSD, CSN, CSO & IT)								
3.	U24CY102C	Engineering Chemistry (for Civil Engineering)								

DIFFERENTIAL CALCULUS AND ORDINARY DIFFERENTIAL EQUATIONS

Class: B.Tech. I-Semester	Branch: Common to all branches			
Course Code:	U24MH101	Credits:	3	
Hours/Week(L-T-P-O-E):	2-1-0-6-9	CIE:	60(%)	
Total Number of Teaching Hours:	36 Hrs	ESE:	40(%)	

Course Learning Objectives (LOs):

This course will develop students' knowledge in/on...

LO1: convergence of an infinite series and differential calculus

LO2: partial differentiation and its applications

LO3: differential equations of first order and first degree along with certain applications

LO4: higher order linear differential equations and applications

UNIT-I 9 Hrs

Infinite Series: Sequences, Series, General properties of series, Series of positive terms,

Infinite Series: Sequences, Series, General properties of series, Series of positive terms, Comparison tests-Limit form, Integral test, D' Alembert's Ratio test, Cauchy's root test Differential Calculus and its applications: Fundamental theorems - Rolle's theorem (Geometrical interpretation), Lagrange's mean value theorem (Geometrical interpretation), Cauchy's mean value theorem, Taylor's theorem (Generalized mean value theorem), Expansions of functions - Maclaurin's series, Taylor's series, Maxima and Minima-Conditions, Practical problems (rectangle, right circular cylinder, cone)

Self-Learning Topics (SLTs): Review of basic concepts of limit, continuity and differentiability [Reference 1:topic (3.1,3.2,3.5,4.1)] Alternating series [(Text1:topic 9.12, Solved problems: 9.16,9.17, Practice problems: exercise 9.7(1,7)] Additional problems on fundamental theorems [(Text1:topic 4.3, Solved problems: 4.13(i), 4.14,4.17, Practice problems: exercise 4.4(1(i),1(ii),3(ii),10(i),10(ii))]

Additional problems on Maclaurin's series [(Text1:topic 4.4,Solved problems: 4.20, Practice Problems: exercise 4.5(3,5)]

UNIT-II 9 Hrs

Partial differentiation and its applications: Functions of two or more variables, Partial derivatives, Total derivative, Change of variables, Jacobians, Functional relationship, Geometrical Interpretation-Tangent plane and Normal to a surface, Taylor's theorem for function of two variables (without proof), Errors and approximations, Total differential, Maxima and minima of functions of two variables, Lagrange's method of undetermined multipliers, Differentiation under the integral sign

Self-Learning Topics (SLTs): Leibnitz rule of Differentiation under the integral sign for variable limits [(Text 1:topic 5.13(2)), Solved problems: 5.54, Practice problems: exercise 5.11(1)]

Additional problems on maxima and minima of function of two variables [(Text 1: topic 5.11(1), Solved problems: 5.42, 5.43, Practice problems: exercise 5.10 (1(i), 1(ii), 1(iii))]

Additional problems on Lagrange's methods of undetermined multipliers [(Text 1: topic(5.12), Solved problems: 5.45, 5.48, Practice problems: exercise 5.10(3(i),3(ii))]

UNIT- III 9 Hrs

Differential equations of first order (DE): Re orientation of differential equation of first order and first degree (Formation a differential equation, variable separable method, homogeneous equations, Linear equations), Exact differential equations, Equations reducible to exact equations

Applications of differential equations of first order: Orthogonal trajectories-Orthogonal trajectories of the family of curves f(x, y, c)=0, Physical applications-Motion of a boat across a stream, Resisted motion, Velocity of escape from the earth, Simple electric circuits-RL series circuit, Newton's law of cooling, Rate of decay of Radio-active materials, Rate of growth of population

Self-Learning Topics (SLTs): Review of DEs of first order (Text 1: topic 11.1, 11.2, 11.3, 11.4,11.5) Solutions of Non-exact Des by Inspection Method [(Text1:topic1 1.12(1), Solved Problems: 11.30, Practice problems :exercise 11.8(1,3)]

Additional problems on Non-exact Des [(Text1:topic11.12(2,3,4,5), Solved problems: 1.33,11.35,11.36, Practice problems: exercise 11.8 (9,15)]

Orthogonal Trajectories of family of curves in polar coordinates [(Text1:topic 12.3(3), Solved Problems :12.7,12.8, Practice problems: exercise 12.2(9,10)]

UNIT-IV 9 Hrs

Linear differential equations: Linear differential equations with constant coefficients, Rules for finding complementary function, In verse operator, Rules for finding the particular integral ($Q=e^{ax}$, sin (ax+b) or cos (ax+b), x^m and $e^{ax}V(x)$), Method of variation of parameters, Linear dependence of solutions

Applications of linear differential equations: Simple harmonic motion, Simple pendulum, Oscillations of spring, Oscillatory electrical circuit-LCR circuit, Electromechanical analog

Self-Learning Topics (SLTs):

Finding the particular integral of $Q(X) = X^mV(X)$ [(Text1:topic 13.7, Solved problems: 13.16, 13.17, 13.19, Practice problems: exercise 13.2 (21,22)].

Additional problems on method of variation of parameters [(Text 1: topic 13.8(1), Solved problems: 13.25, 13.26, Practice problems: exercise 13.3 (1,5)]

Cauchy's homogeneous linear differential equation [(Text 1: topic 13.9(1), Solved problems: 13.31, 13.34, Practice problems: exercise 13.4 (3,6,9)]

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

CO1: examine the convergence of a series and interpret mean value theorems

- **CO2**:apply partial differentiation to functions of several variables in solving various engineering problems
- CO3: apply appropriate methods of differential equations of first order and first degree to solve real life engineering problems
- **CO4**: analyze the solutions of higher order linear differential equation with constant coefficients

Text book(s):

1.Grewal, B.S., *Higher Engineering Mathematics*, 44th ed., New Delhi, 2017.Khanna Publishers,

Reference Book (s):

- 1. Shanti Narayan, Dr. Mittal P.K, *Differential Calculus*, 1st ed., New Delhi S. Chand & Co., Reprint, 2014
- 2. Kreyszig E, *Advanced Engineering Mathematics*, 10th ed., U.K, John wiely & sons, 2020
- 3. S.S. Sastry, Engineering Mathematics, Vol. II, 3rd ed., Prentice Hall of India, 2014.

Web and Video link(s):

- 1. https://youtu.be/4EYko9rdF7g?si=WUu12NPTEL Video Lecture on Infinite series by Prof. S.K. Ray ,Professor of Mathematics, IITK Kanpur.
- 2. https://youtu.be/0apMXhWG_W8?si=M-abw2Gq3buX5HLM NPTEL Video Lecture on Fundamental mean value theorems by Prof. Jithedra Kumar, Professor of Mathematics, IITK Kharagpur.
- 3. https://youtu.be/6r5jfT8xrXM?si=ryLXYVJr4-iUkdlV;NPTEL Video Lecture on Exact Differential Equations, Prof. Jithedra Kumar, Professor of Mathematics, IIT Kharagpur.
- 4. https://youtu.be/kbGhrqV9AOM?si=yGyK_V7k]KGa3OaRNPTEL Video Lectureon Orthogonal Trajectories of family of curves by Prof. Aditya Sharma, Professor of Physics, IISE Bhopal.
- 5. https://youtu.be/btOCUm]krrg?si=zq3nB00kplm7b5se;NPTELVideo Lecture on Higher Order Linear Differential Equations, Prof. Jithedra Kumar, Professor of Mathematics, IIT Kharagpur.

Course Articulation Matrix(CAM):					U24N Equa		: Diff	erenti	al Cal	culus	and O	rdinary	Differ	ential
CO PO1 PO2 PO3				PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	
CO1	U24MH101.1	2	2	1	1	-	-	1	1	1	-	1	1	1
CO2	U24MH101.2	2	2	1	1	-	1	1	1	1	-	1	1	1
CO3	U24MH101.3	2	2	1	1	ı	ı	1	ı	1	-	1	1	1
CO4	U24MH101.4	2	2	1	1	-	1	1	,	1	-	1	1	1
U24MH101 2 2 1					1	-	-	1	•	1	-	1	1	1
					3-HIC	GH,2-	MEDI	IUM,1	-LOV	V				

ENGINEERING CHEMISTRY (for Civil Engineering)									
Class: B.Tech. II-Semester		Branch: CE							
Course Code:	U24CY102C	Credits:	4						
Hours/Week(L-T-P-O-E):	2-1-2-5-10	CIE:	60(%)						
Total Number of Teaching Hours:	60 Hrs	ESE:	40(%)						

Course Learning Objectives (LOs):

This course will develop students' knowledge in/on...

LO1: electro chemical energy systems, batteries and fuel cellsLO2: water analysis and corrosion with its preventive methodsLO3: polymers and spectroscopic techniques for chemical analysis

LO4: cement, polymer concrete, nano materials and their applications

THEORY COMPONENT								
UNIT-I	9 Hrs							

Electrochemical Technology and Engineering: Introduction, Specific conductance, Equivalent conductance, Effect of dilution, Conductometric titrations; Acid base titrations (Strong acid vs strong base, Strong acid vs weak base, Weak acid vs strong base and weak acid vs weak base), Advantages of conductometric titration, Galvanic cell, Electrode potential, Electro chemical series, Nernst equation, Potentiometric titrations; Acid - base titrations, Advantages of potentiometric titrations, Biosensors, Batteries; Classification, Lead-acid battery, Fuel cells; Hydrogen-oxygen fuel cell

Self- Learning Topics (SLTs): Types of conductors (Text 1: chapter 5 topic 1), Ohms law (Text1: Chapter 5 topic 5)

UNIT-II 9 Hrs

Water Technology and Corrosion: Introduction, Hardness of water, Estimation of hardness of water by complexometry, Alkalinity, Determination of alkalinity, Numerical problems, Determination of dissolved oxygen (DO), Biochemical oxygen demand (BOD), Chemical oxygen demand (COD), Softening method; Ion-exchange method, Desalination processes; Reverse osmosis, Quality parameters of potable water (BIS,WHO)

Corrosion: Introduction, Dry corrosion, Pilling-Bed worth rule, Wet corrosion, Factors effecting corrosion; purity of the metal, Relative areas of anodic and cathodic parts, Nature of surface film, Humidity, pH and temperature, Prevention methods of corrosion; Cathodic protection, Impressed current cathodic protection, Sacrificial anodic protection

Self- Learning Topics (SLTs): Units of hardness (Text1: chapter1topic 5), Introduction to Corrosion (Text 1: chapter 7 topic 1), galvanic series (Text1: chapter7topic12)

UNIT-III 9 Hrs

Polymer Chemistry and Characterization of Materials using Spectroscopic Methods Polymers: Introduction, Monomer, Polymer, Types of polymerization; Addition and condensation, Preparation, Properties and applications of Polythene, Poly vinyl cyanide, Poly vinyl chloride, Bakelite, Nylon 6:6, Thermo setting resins and thermo plastic resins, Conducting polymer sand their applications

Spectroscopy: Introduction to spectroscopy, Microwave spectroscopy; Principle, Selection rules, Applications, Infra-red spectroscopy; Principle, Selection rules, Applications, UV spectroscopy; Lambert-Beer's law and its applications

Self -Learning Topics (SLTs): Mechanism of addition polymerization (Text1: chapter 3 topic 6), Electromagnetic spectrum (Text 1: chapter 35 topic1)

UNIT-IV 9 Hrs

Engineering Materials Cement: Introduction, Cement, Manufacture of port land cement, Chemical constitution of port land cement, Setting and hardening of port land cement, Heat of hydration of cement, concrete, Polymer concrete, Polymer Impregnated concrete, Glasses and ceramics, Glass Fibrere in forced cement (GRC)

Nano materials: Introduction, Synthesis of nano materials; Top down and bottom-up approaches, Synthesis by sol-gel method, Nano scale materials; Fullerenes, Carbon nano tubes, Graphene; Properties and applications

Self-Learning Topics(*SLTs*):*Classification of cement*(*Text1:chapter11topic12*),*Introduction to Nano technology* (*Text1: chapter 37 topic 1*)

LABORATORY COMPONENT

List of Experiments

- 1. Estimation of hydroxide ion[OH-] by Acidimetry using standard sodium carbonate Solution
- 2. Estimation of alkalinity of water sample containing (i)carbonate; (ii)carbonate & bicarbonate in Ground water
- 3. Estimation of alkalinity of water sample containing (i)bicarbonate; (ii)carbonate & hydroxide in potable water
- 4. Determination of hardness of water by complexometric method
- 5. Determination of dissolved oxygen in a sample of water
- 6. Standardization of sodium hydroxide (NaOH) by conductometry using standard hydrochloric acid(HCl)
- 7. Standardization of acetic acid (CH₃COOH) by conductometry using standard sodium hydroxide(NaOH)
- 8. Standardization of strong acid hydrochloric acid (HCl) by potentiometry using standard sodium hydroxide(NaOH)
- 9. Colorimetric analysis -verification of Lambert-Beer's law
- 10. Estimation of (Fe²⁺) ion in the given solution using potassium permanganate
- 11. Preparation of nanoparticles of cadmium sulphide (CdS)
- 12. Synthesis of polymer (phenol-formaldehyde)

Text Book(s):

- 1. Jain and Jain, *Engineering Chemistry*, 19th ed., New Delhi, Dhanpat Rai Publishing Company, 2023.
- 2. M.S.Shetty, Concrete Technology Theory and Practice, 17th ed., New Delhi, S.Chand & Company Ltd., 2021.

Reference Book(s):

- 1. J.C.Kuriacose and J.Rajaram, *Chemistry in Engineering and Technology (volume I & II)*, 10th ed., New Delhi, Tata Mc.Graw-Hills Education Pvt. Ltd., 2022.
- 2. Shashi Chawla, *Text book of Engineering Chemistry*, 5th ed., New Delhi, Dhanpat Rai Publishers, 2021.
- 3. S.S. Dara, S S.Umare, A Text book of Engineering Chemistry, S. 14th ed., Chand & Company Ltd., 2022.

Web and Video link(s):

1.https://elearn.nptel.ac.in/shop/iit-workshops/completed/battery-cell-technology-materials-and-industrial-applications/?v=c86ee0d9d7ed NPTEL Video Lecture on Battery technology by Dr. Kothandaraman, Professor of Chemistry, IIT Madras & Dr. Raghunathan, Professor of Chemical engineering, IIT Madras

Laboratory Manual (for laboratory component):

1. Engineering Chemistry laboratory manual, Department of PS, KITSW

Course Learning Outcomes(COs)

After completion of this course, the students should be able to,

(based on cognitive skills acquired from theory component)

CO1:apply the concepts of electro chemical energy systems for batteries and fuel cells

CO2:interpret suitable techniques of water analysis and corrosion treatment of solid materials

CO3:appraise the spectroscopic techniques of chemical analysis and applications of polymers

CO4:summarize the synthesis and applications of engineering materials

(based on psycho motor skills acquired from laboratory component)

CO5:determine water quality parameters -alkalinity, hardness

CO6: make use of analytical instruments for chemical analysis

CO7: determine metals present in their ores

CO8:design the synthesis of nonmaterial and polymer

Course Articulation Matrix (CAM):					U24CY102C ENGINEERING CHEMISTRY (for Civil Engineering)									
CO		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CY102C.1	2	-	-	-	1	1	1	-	1	-	1	1	1
CO2	U24CY102C.2	2	-	-	-	1	1	1	-	1	-	1	1	1
CO3	U24CY102C.3	2	-	-	-	1	1	1	-	1	-	1	1	1
CO4	U24CY102C.4	2	-	-	-	1	1	1	-	1	-	1	1	1
CO5	U24CY102C.5	2	1	-	-	-	1	1	-	1	-	1	1	1
CO6	U24CY102C.6	2	1	-	-	2	1	1	-	1	-	1	1	1
CO7	U24CY102C.7	2	1	-	-	-	1	1	-	1	-	1	1	1
CO8	U24CY102C.8	2	1	-	-	-	1	1	-	1	-	1	1	1
U24	U24CY202A 2 1					1.2	1	1	-	1	-	1	1	1
		1		3-HIC	<u>.</u> GH,2-N	MEDIU	JM,1-	LOW	<u>I</u>		<u> </u>			

ENGINEERING MECHANICS										
Class: B.Tech. I- Semester	Branch: Civil Engineering									
Course Code:	U24CE103	Credits:	3							
Hours/Week(L-T-P-O-E):	2-1-0-4-7	CIE:	60(%)							
Total Number of Teaching Hours:	36 Hrs	ESE:	40(%)							

Course Learning Objectives (LOs):

This course will develop students' knowledge in/on...

LO1: force systems and their applications

LO2: concepts and application of friction, analysis of plane trusses

LO3: centroid and moment of inertia of geometric and composite areas

LO4: shear force and bending moment for determinate beams

UNIT-I 9 Hrs

Laws of Mechanics: Parallelogram law of forces, triangle law of forces, Newton's law of gravitation, law of super position and transmissibility of forces

Force Systems: Types of forces, co-planar, concurrent and parallel forces, moment and couple, free body diagram, resultant of force systems, resolution of forces, composition of forces, equilibrium equations of forces, Lami's theorem, Varignon's theorem, moment equilibrium equations

Self-Learning Topics (SLTs):Newton's law of gravitation (Text1: topics 1.4), Principle of Transmissibility (Text 1: topics 1.4), Resultant of several concurrent coplanar forces (Text 1: topics2.5), Method of projections(Text 1: topics 2.7), Practice Problems (Text1: Prob2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7) Solved Problems (Text 1, Prob. 2.17, 02.18)

UNIT-II 9 Hrs

General Equilibrium: Types of supports, beams and loadings, statically determinate structures, resultant and equilibrium of general force system

Plane Trusses: Rigid truss, stability and determinacy conditions, basic assumptions for a perfect truss, analysis of trusses by method of joints and method of sections of a cantilever and simply supported statically determinate pin-jointed trusses

Self-Learning Topics (SLTs): Types of Supports and Support reactions (Text 1: topics 2.10), Practice Problems (Text 1: Prob 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17) Solved Problems (Text1: Prob 2.15, 2.16, 2.17), Rigid and Perfect Trusses, Axial forces in members (Text 1: Topic 9.2, 9.3) Practice Problems (Text1: Prob. 9.1, 9.2, 9.3, 9.4) Solved Problems (Text1: Prob. 9.1, 9.2)

UNIT- III 9 Hrs

Centroid: Centroid of one-dimensional figures, centroid of simple figures from first principles, centroid of composite sections

Moment of Inertia: Moment of inertia of plane sections from first principles, theorems of moment of inertia-parallel axis theorem and perpendicular axis theorem, moment of inertia of standard sections and composite sections

Self- Learning Topics (SLTs): Determination of Centroid by method of Integration (Text1: Topics 4.5) Solved Problems (Text1: Prob. 4.1, 4.2, 4.3) Practice Problems (Text1: Prob. 4.1, 4.2, 4.3), Determination of Centroid by method of Moments (Text1:Topics 4.2, 4.3, 4.4)Solved Problems (Text1: Prob.4.8, 4.9, 4.10, 4.11, 4.12) Solved Problems (Text1: Problems 4.8, 4.9), Parallel Axis Theorem (Text 1: Topic 12.5) Practice Problems (Text1: Prob 12.14, 12.15), Solved Problems (Text1: Prob. 12.9, 12.10)

UNIT-IV 9 Hrs

Shear force: Concept of shear force, shear force diagram for simply supported, cantilever and overhanging beams, loading from shear force diagram

Bending moment: Concept of bending moment, bending moment diagram for simply supported, cantilever and over hanging beams, loading from bending moment diagram

Self-Learning Topics (SLTs): Classification of beam, Shear force and Bending Moment (Text2:Topic 4.3), Determination of shear force and bending moment for cantilevers (Text2: topics4.4, 4.5,4.6) Solved Problems (Text2:, Prob. 4.3, 4.4, 4.5) Practice Problems (Text2: Prob.1,2,3), Shear force and bending moments for simply supported beams (Text2: Topic 4.4, 4.13) Solved Problems (Text 2:Prob.4.13,4.14,4.15) Practice Problems (Text2:Prob.4,5,6,7) Point of Contra flexure (Text 2:, Topics 4.18, 4.19) Solved Problems (Text2:, Prob. 4.14, 4.15) Practice Problems (Text2, Prob.12,13,14,15)

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

CO1: distinguish various force systems and their applications

CO2: analyze plane trusses

CO3: evaluate centroid and moment of inertia of geometric and composite areas

CO4: construct shear force and bending moment diagrams

Text book(s):

- 1. Tayal A.K., Engineering Mechanics: Statics and Dynamics, 15th ed., New Delhi, Umesh Publishers, 2020.
- 2. Rajput R.K., Strength of Materials, 8th ed., New Delhi, S. Chand and Company 2021.

Reference Book(s):

- 1. Timoshenko S., Young D.H.,Rao J.V., and Sukumar Pati, *Engineering Mechanics*, 6th ed., New Delhi, Mc Graw Hill Education Pvt. Ltd.,2021.
- 2. Bhavikatti S.S., *Engineering Mechanics*, 5th ed., New Delhi, New Age International, 2013(reprint).
- 3. Basudeb Bhattacharyya, *Engineering Mechanics*, 10th ed., New Delhi, Oxford University Press, 2020.
- 4. Subramanian R., *Strength of Materials*, 4th ed., New Delhi, Oxford University Press, 2021
- 5. Ramamrutham S., *Strength of Materials*, 3rd ed., New Delhi, Dhanpat Rai & Sons, 2017.

Web and Video link (s):

- 1. https://youtu.be/nGfVTNfNwnk?si=F7BEBuhGhrhvfn71NPTEL Video Lecture on Introduction to Engineering Mechanics by Prof. K Ramesh, Professor, Applied Mechanics, IIT Madras.
- 2. https://youtu.be/6u_rjLjv-MY?si=lu9zL13Nnungo4InNPTEL Video Lecture on Forces And Force Systems by Prof. K Ramesh, Professor, Applied Mechanics, IIT Madras.
- 3. https://youtu.be/ljDIIMvx-eg?si=RTFveUSwBfju9MqyNPTEL Video Lecture on Equilibrium of Rigid Bodies by Prof. K Ramesh, Professor, Applied Mechanics, IIT Madras.
- 4. https://youtu.be/lheoBL2QaqU?si=XFq5Xn6NrdxYgsT3NPTEL Video Lecture on Analysis of Trusse by Prof. K Ramesh, Professor, Applied Mechanics, IIT Madras.
- 5. https://youtu.be/z95UW4wwzSc?si=80QeghkeSwS7GQMONPTEL Video Lecture on Analysis of Beams by Prof. K Ramesh, Professor, Applied Mechanics, IIT Madras.
- 6. https://youtu.be/l_xTyy4wqtw?si=vQkD1Cc73rfzSspWNPTEL Video Lecture on Shear Force and Bending Moment by Prof. M.S.Siva Kumar, Department of Applied Mechanics, IIT Madras.
- 7. https://youtu.be/MX43g-DD8pU?si=sc-InkQ_8scFVxFQNPTEL Video Lecture on Centroid and Moment of Inertia by Prof. Manoj K Harbola, Professor, Dept. of Physics, IIT Kanpur.

Course	Articulation N		U24CE103 ENGINEERING MECHANICS											
CC)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO ₂
CO1	U24CE103.1	3	2	1	-	-	1	1	1	1	1	1	2	1
CO2	U24CE103.2	3	2	1	-	-	1	1	1	1	1	1	2	1
CO3	U24CE103.3	3	2	1	-	_	1	1	1	1	1	1	2	1
CO4	U24CE103.4	3	2	1	-	-	1	1	1	1	1	1	2	1
U24CE103 3 2 1			1	-	-	1	1	1	1	1	1	2	1	
				3-HI	GH, 2-	MED	IUM,	1-LOV	V					

PROGRAMMING FOR PROBLEM SOLVING WITH C										
Class: B.Tech. I-Semester Branch: Common to all branche										
Course Code:	U24CS104	Credits:	4							
Hours/Week(L-T-P-O-E):	2-1-2-5-10	CIE:	60(%)							
Total Number of Teaching Hours:	60 Hrs	ESE:	40(%)							

Course Learning Objectives (LOs):

This course will develop students' knowledge in/on...

LO1: algorithms, flowcharts and develop programs with basic constructs

LO2: control structures and array operations

LO3: string operations and modular programming concepts with functions and recursion

LO4: structures, unions, pointers and files in C programming

THEORY COMPONENT	
UNIT-I	9 Hrs

Introduction to Programming: Art of programming through algorithms and flow charts

Overview of C: History of C, Importance of C, Basic structure of C programs

Constants, Variables and Data Types: Character set, C tokens, Declaration of variables, Defining symbolic constants

Managing Input and Output Operations: Reading a character, Writing a character, Formatted input, Formatted output

Operators and Expressions: Arithmetic, Relational, Increment, Decrement, Conditional, Logical, Bit-wise, Special operators, Arithmetic expressions, Evaluation of expressions, Operator precedence and associativity

Self- Learning Topics (SLTs): Components of a computer, concept of hardware and software (Text1: chapter 1), Executing a C program (Text1: chapter 2), Type conversions in expression (Text1: chapter 4) Solved problems (Text1: chapter 2 to chapter 5), Review questions, debugging exercises, programming exercises, interview questions (Text1: chapter 2 to chapter 5)

UNIT-II 9 Hrs

Decision Making and Branching: Simple if statement, if-else statement, Nesting of if-else statements, else if ladder, switch statement, Conditional operator, go to statement

Decision Making and Looping: while statement, do-while statement, for statement, Nested loops, Jumps in loops

Arrays: One-dimensional arrays, Declaration of one-dimensional arrays, Initialization of one-dimensional arrays, Linear search, Two-dimensional arrays, Initializing two dimensional arrays, Multi-dimensional arrays

Self-Learning Topics (SLTs): Concise test expressions (Text1: chapter 7) Dynamic arrays (Text1: chapter 8), Solved problems (Text1: chapter 6 to chapter 8), Review questions, debugging exercises, programming exercises, interview questions (Text1: chapter 6 to chapter 8)

UNIT-III 9 Hrs

Character Arrays and Strings: Declaring and initializing string variable, Reading strings from terminal, Writing strings to screen, String handling functions, Table of strings

Modular Programming with User Defined Functions: Need for user-defined functions, Elements of user-defined functions, Definition of functions, Return values and their types, Function calls, Function declaration, Category of functions, Recursion, The scope, visibility and life time of variables (storage classes)

Self-Learning Topics (SLTs): Arithmetic operations on characters, comparison of strings (Text1: chapter 9), Nesting of functions, (Text1: chapter 10), Solved problems (Text1: chapter 9 & chapter 10), Review questions, debugging exercises, programming exercises, interview questions (Text1: chapter 9 & chapter 10).

UNIT-IV 9 Hrs

Structures and Unions: Defining a structure, Declaring and initializing structure variables, Accessing structure members, Array of structures, Structures within structures, Unions **Pointers:** Understanding pointers, Declaring and initializing pointer variables, Pointer expressions, Pointers and arrays, Pointers and character strings, Pointers to functions, Pointers and structures

File Management in C: Defining and opening a file , Closing a file, Input and output operations on sequential text files

Self-Learning Topics (SLTs): Operations on individual members (Text1: chapter 11), Chain of pointers, array of pointers (Text1: chapter 12), Random access to files, Command line arguments (Text1: chapter 13). Solved problems (Text1: chapter 11 to chapter 13), Review questions, debugging exercises, programming exercises, interview questions (Text1: chapter 11 to chapter 13)

LABORATORY COMPONENT

List of Experiments

- 1. Programs using input output functions, operators (arithmetic, relational and conditional)
- 2. Programs using operators (bit-wise, logical, increment and decrement)
- 3. Programs using conditional control structures: if, if-else, nested if
- 4. Programs using else if ladder, switch and go to statements
- 5. Programs using loop control structures: while
- 6. Programs using loop control structures: do-while and for
- 7. Programs on one dimensional array and two-dimensional arrays
- 8. Programs on String operations and string handling functions
- 9. Programs on different types of functions, parameter passing using call-by-value & call-by-address, recursion and storage classes
- 10. Programs using structures, unions, pointers to arrays and pointers to strings
- 11. Programs using array of pointers and pointers to structures
- 12. Programs on File operations and file hand ling functions for sequential text files

Text book (s):

1. Balaguru swamy. E, *Programming in ANSIC*, 9th ed., McGraw Hill, 2024.

Reference Book(s):

- 1. Paul Deitel, Harvey Deitel, C How to Program: With Case Studies Introducing Applications Programming and Systems Programming, , 9th ed., Pearson Education Limited, 2022
- 2. Brian W. Kernighan and Dennis Ritchie, *The C Programming Language*, 2nd ed., Pearson Education India, 2015
- 3. Reema Thareja, *Programming in C*, , 3rd ed., Oxford University Press 2023
- 4. Yashavant Kanetkar, Let Us C, 19th ed., BPB Publications, , 2022
- 5. A.K. Sharma, *Computer Fundamentals and Programming in C*, 2nd ed., Universities Press, 2018

Web and Video link (s):

https://nptel.ac.in/courses/106105171 NPTEL Video Lecture on Problem Solving through Programming in C by Prof. Anupam Basu, Professor of CSE, IIT Kharagpur.

https://nptel.ac.in/courses/106104128NPTEL Video Lecture on Introduction to Programming in C by Prof. Satyadev Nanda kumar, Professor of CSE, IIT Kanpur

Laboratory Manual (for laboratory component):

1. Programming for Problem Solving with C Laboratory Manual and Record Book, Department of CSE, KITSW.

Course Learning Outcomes(COs):

After completion of this course, the students should be able to,

(based on cognitive skills acquired from theory component)

CO1:enumerate programming development steps, design an algorithm and draw a flow chart for a given application

CO2: apply logical skills for problem solving using control structures and arrays

CO3: develop string operations and modular programming with functions

CO4: analyze and implement structures, unions, pointers and files in C programming (based on psychomotor skills acquired from laboratory component)

CO5: develop programs using operators and decision making statements

CO6: apply loops and arrays to develop a program of an application

CO7: implement string operations and develop modular programs using user-defined functions, recursion, and storage classes

CO8: develop programs using structures, unions, pointers and files

Cou	rse Articulatio	n Mat	rix (C	AM):	U240	C S10 4	1: Pro	gram	ming	For I	Proble	m Solv	ing W	ith C
CO PO1 PO2 PO3					PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	U24CS104.1	2	1	1	1	-	-	1	-	1	-	2	1	2
CO2	U24CS104.2	2	2	2	1	ı	•	1	-	1	1	2	2	2
CO3	U24CS104.3	2	2	3	1	ı	ı	1	-	1	ı	2	2	2
CO4	U24CS104.4	2	2	3	2	ı	•	1	-	1	1	2	2	2
CO5	U24CS104.5	1	1	1	1	1	-	1	1	1	-	2	1	2
CO6	U24CS104.6	1	2	2	2	1	-	1	1	1	-	2	2	2
CO7	U24CS104.7	1	2	3	2	1	-	1	1	1	-	2	2	2
CO8	U24CS104.8	1	2	3	2	1	-	1	1	1	-	2	2	2
	U24CS104	1.5	1.75	2.25	1.5	1	-	1	1	1	-	2	1.75	2
				3-	-HIGH	I, 2-M	IEDIU	M, 1-L	OW		•			

ENGLISH COMMUNICATION AND REPORT WRITING										
Class: B.Tech. I&II-Semesters	Branch: Common to all branches									
Course Code:	U24MH105/U24MH205	Credits:	2							
Hours/Week(L-T-P-O-E):	2-0-0-3-5	CIE:	60(%)							
Total Number of Teaching Hours:	Total Number of Teaching Hours: 36 Hrs ESE: 40(%)									

Course Learning Objectives (LOs):

This course will develop students 'knowledge in/on...

- LO1: basic grammar principles, reading speed, forming new words, making coherent paragraphs and also promoting ethical values for meaningful life
- LO2: speaking or writing correct sentences, writing effective letters and improving their self-worth.
- LO3: critical reading ability, writing conclusive reports and additionally inculcating positive thinking

LO4: abridging varieties of lengthy texts and maintaining emotional balance.

UNIT-I	9 Hrs
--------	-------

GRAMMAR

- Tenses-Structures-usage-examples-exercises for practice
- Sentence Correction-Correct use of Tenses, Verb forms, Punctuation.

VOCABULARY

• Word formation: Prefixes-Suffixes-Sentence Formation with newly formed words

READINGSKILL

•Definition-Sub skills of Reading-Emphasis on Skimming-Purpose-How to skim through the text-Examples, Exercises for practice

WRITING PRACTICES

- Paragraph Writing-Definition-Organizing Principles of paragraphs-Making a paragraph through hints/graphs and pictures-Coherence-Linking Devices-Systematic Development of Ideas
- Para phrasing-Précising lengthy expressions for clarity and brevity

LIFE SKILLS:

Ethical Values and Humanity The Last Leaf: A Short Story by O. Henry

Self - Learning Topics (SLTs):

Articles-(Text2, Unit-II), English Vocabulary (Text2, Unit-I, Unit-II, Unit-III) Verb Forms (Reference book 1, Topic :31), Tenses (Reference book 1, Topics: 16,17,18,19) Reported Speech (Reference book 2, Exercises for Practice, Topics:161-167)

UNIT-II	9 Hrs

GRAMMAR

- Tenses-Revision-Exercises for practice
- Subject-Verb Agreement
- Reported Speech-Transformation
- Sentence Correction-Emphasis Concord, Report Speech, Sentence Structures

VOCABULARY

• Synonyms-Antonyms-Single Word Substitutes-Popular Abbreviations

READINGSTRATEGY

• Emphasis on Scanning the Text-Purpose-Advantages-Examples, Exercises and Practice through Teamwork

WRITING PRACTICES

Letter Writing- Effective Letter Writing Techniques-Information Seeking Letters - Job Application Letters-Apology Letters-Explanation to Memos-E-mails-Cover Letters-Resume

LIFE SKILLS: Determination

• How I Became a Public Speaker: An essay by George Bernard Shaw

Self- Learning Topics (SLTs): English Vocabulary (Text 2,Unit-I,Unit-II,Unit-III),Tenses (Reference book3, Topic-30, Exercises, 30.1, 30.2, 30.3)

UNIT-III 9 Hrs

GRAMMAR

- Tenses-Revision-Exercises for Practice
- Nouns-Prepositions-Adverbs-Adjectives
- Sentence Correction: Correct Use of tenses, nouns, prepositions, adverbs and adjectives

VOCABULARY

• Phrasal Verbs-Technical Words-Latin Words

READINGSTRATEGY

• Intensive Reading-purpose-Types of Comprehension Questions-Examples, Exercises and Practice through Team work

WRITING PRACTICES

- Report Writing Definition-Purpose-Qualities of a Good Report- Formal and Informal Reports-Report Format-Sample Reports-Exercises
- Emphasis on Technical Reports

LIFES KILLS: Positive Attitude Be the Best of Whatever You Are :A Poem by Douglas Malloch

Self- Learning Topics (SLTs): Parts of Speech (Text book1, Unit-1), Tenses (Reference book1, Topics-16,17,18,19) Phrasal Verbs (Reference book 3)

UNIT-IV 9 Hrs

GRAMMAR

- Tenses-Revision-Exercises for Practice
- Clauses-Conjunctions-Transformation of Sentences
- Sentence Correction (Based on Parts of Speech)- Clauses- Tenses

VOCABULARY

• Appropriate Use of Words in Communication – Commonly Confused Words

ACTIVE READING and NOTE - MAKING

• Note-Making-Definition-Purpose-Effectiveness

WRITING PRACTICES

- Précis Writing-Definition-Purpose-Uses-Examples and Exercises-Practice through Team work
- Preparing Statement of Purpose (SoP)

LIFE SKILLS: Emotional Balance A Poison Tree: Poem by William Blake

Self-Learning Topics (SLTs): Tenses (Reference book 2, Topics:152-157))

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

CO1: apply basic grammar principles in speech and writing, read fast, form new words, make coherent paragraphs and adapt the real value of life.

CO2: create effective letters, e-mails, reply to Memos and do the given tasks with confidence.

CO3: analyze the given texts and write clear and unambiguous reports.

CO4: deduct the superfluous information from lengthy text, prepare SoP (Statement of Purpose) effectively and solve critical problems in life with emotional balance.

Text book(s):

- 1. Sanjay Kumar & Pushp Lata, *English Language and Communication Skills for Engineers* As per the latest AICTE syllabus, 2nd ed., Oxford University Press 2022.
- 2. R.K.Gupta Language and Life: A Skill's Approach Based on the latest AICTE model curriculum, 3rd ed., Orient Black swan Private Limited, 2023.

Reference Book(s):

- 1. Thomson A.J., Martinet A.V., A Practical English Grammar, 5th ed., Oxford University Press, 2021.
- 2. Thomson A.J., Martinet A.V, *A Practical English Grammar* Exercise 2, 5th ed., Oxford University Press, 2021.
- 3. Standard Allen W., Living English Structure, 7th ed., Pearson India Education Pvt. Ltd. 2021.

Web and Video link(s):

- 1. https://onlinecourses.nptel.ac.in/noc20_hs/preview Technical English for Engineers by Aisha Icbal, IIT Madars.
- 2. https://onlinecourses.swayam2.ac.in/cec21_lg13/preview Indian Writing in English by Dr.Bindu Ann Philip, St. Mary's College Trissur.

Course A	Course Articulation Matrix (CAM):					U24MH105/205: English Communication & Report Writing									
CO PO1 PO2			PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2		
CO1	U24MH105.1	-	-	-	-	1	1	2	2	2	-	2	-	-	
CO2	U24MH105.2	-	-	-	-	-	1	2	2	2	-	2	-	-	
CO3	U24MH105.3	-	-	-	-	-	1	2	2	2	-	2	-	-	
CO4	U24MH105.4	-	-	-	-	-	1	2	2	2	-	2	-	-	
U24MH105/205			-	1	1	1	2	2	2	-	2	-	-		
			,	3-HIC	GH,2-N	1EDIU	JM,1-	LOW							

SPORTS and YOGA									
Class: B.Tech. I/II-Semester	Branch: Common to all branches								
Course Code:	U24VA106	Credits:	1						
Hours/Week(L-T-P-O-E):	0-0-2-2-4	CIE:	60(%)						
Total Number of Teaching Hours:	24 Hrs	ESE:	40(%)						

Course Learning Objectives (LOs):

This course will develop students 'knowledge in/on...

LO1: yoga and its benefits LO2: various sports & games LO3: sports man spirit LO4: all round development

	Sports and Games									
	List of Sports and Games									
Sl. No.	Game	Sl. No	Game							
1	Badminton	7	Volleyball							
2	Basket ball	8	Cricket							
3	Chess	9	Hand Ball							
4	Carom	10	Kabaddi							
5	Foot Ball	11	Kho-Kho							
6	Table Tennis	12	Yoga Aasanas							

Text book (s):

1.B.K. Chaturvedi, *Rules and Skills of Games and Sports*, Publisher – Good will Publishing House, B-9, Rattan Jyoti, 18 Rajendra Place, New Delhi.

Reference Book(s):

1. Sakure Girish Madhao Rao, Foundation of Physical Education and Sports, Sports Publication, New Delhi.

Web and Video link(s):

Badminton game Video Link:https://www.youtube.com/watch?v=HucIqi 8Lw3E&t=22s
Basketball game Video Link:https://www.youtube.com/watch?v=-tkE2lJoR58
Chess Video Link:https://www.youtube.com/watch?v=mDw7lgM8ePo
Carrom game Video Link:https://www.youtube.com/watch?v=z8vvJpNceeg
Football game Video Link:https://www.youtube.com/watch?v=mXjW78AgGu4
Table Tennis game Video Link:https://www.youtube.com/watch?v=bLrJGWvWI4U
Volley ball game Video Link: https://www.youtube.com/watch?v=BJJb3-O0Q1U
Cricket game Video Link: https://www.youtube.com/watch?v=87hO_Vs3-wQ
Hand ball game Video Link: https://www.youtube.com/watch?v=VCa_0USaq8k
Kabaddi game Video Link: https://www.youtube.com/watch?v=ai1m7ARNyNI
Kho-Kho game Video Link: https://www.youtube.com/watch?v=P3_z3LKdLdg
Yoga Aasanas Video Link: https://www.youtube.com/watch?v=e0Q88DUOXjk

https://www.youtube.com/watch?v=JoDKbXEUrvQ

Course Learning Outcomes(COs):

After completion of this course, the student should be able to demonstrate...

CO1:demonstrate physical fitness by performing yoga aasanas

CO2:demonstrate physical fitness through various games & sports events with defined benchmarks

CO3:demonstrate sports man spirit and ethics

CO4: demonstrate physical, psychological, social and emotional balance

Cour	Course Articulation Matrix (CAM):				U24VA106 Sports and Yoga										
	CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	
CO1	U24VA106.1	-	-	-	-	-	-	-	-	-	-	1	-	-	
CO2	U24VA106.2	-	-	-	-	-	-	-	1	-	-	-	-	-	
CO3	U24VA106.3	-	-	-	-	-	-	2	-	-	-	-	-	-	
CO4	U24VA106.4	-	-	-	-	-	-	-	-	1	-	1	-	-	
U24VA106		-	-	-	-	2	1	1	-	1	-	-			
	3-HIGH,2-MEDIUM,1-LOW														

ESSENTIALS OF CIVIL ENGINEERING									
Class: B.Tech. I -Semester	Branch: Civil Engineering								
Course Code:	U24 CE107	Credits:	2						
Hours/Week(L-T-P-O-E):	2-0-0-3-5	CIE	60 (%)						
Total Number of Teaching Hours: 24 Hrs ESE 40 (%)									

Course Learning Objectives (LOs):

This course will develop students' knowledge in/on...

LO1: building planning principles and site conditions using civil engineering standards

LO2: material properties and their suitability for construction applications

LO3: surveying methods and geotechnical data for foundation decisions

LO4: transportation and water systems to create sustainable infrastructure plans

UNIT-I 6 Hrs

Scope of Civil Engineering: Introduction, Scope of Civil Engineering, Branches of Civil Engineering, Aspects of Civil Engineering, Role of Civil Engineers, Infrastructural development of a country.

Building Planning: Principles of planning and site selection, Functional requirements of the building, Building bye-laws as per NBC-objectives, Importance, Applicability; Open space requirements around the buildings, Size of rooms, Height of rooms and buildings.

Self-Learning Topics (SLTs): Infrastructural development of a country (Text1: Chapter1-Topic 1.7), NBC 2016 Part 3 Development Control Rules and General Building along with (Textbook1 Chapter 29-Topic 29.7) to understand how planning regulations apply to building components.

UNIT-II 6 Hrs

Building Materials: Bricks-composition, qualities, size, classification, Cement – composition, grades, types, Sand – properties, sources, classification, bulking, functions. **Building Construction:** Building components-foundation, plinth, superstructure-walls and piers, floors, roofs, stairs, sill, lintel, shade and finishes, Doors and Windowsfunctional requirements, location, classification, Plastering-requirements and methods, Types of paints and uses.

Self-Learning Topics (SLTs): Practice selection of materials using comparison tables from (Textbook2, Chapters 5, table 5.1). plastering, (Textbook2, Chapters 21, Topic 21.1), painting, (Textbook2, Chapters 22, Topic 22.1)

UNIT-III 6 Hrs

Surveying: Objectives, purposes and classification of surveys, Principles of surveying, Types of chain and tapes, Principle of chain survey, Offsets, Ranging, Errors in chain surveying, Compass, Bearings, methods of designation, Fore bearing and back bearing. **Geotechnical Engineering:** Introduction, Applications, Basic characteristics of soil-sieve analysis, effective stress, total stress, pore water pressure, shear strength, consolidation, lateral earth pressure, bearing capacity, slope stability, permeability and seepage, Soil properties.

Self-Learning Topics (SLTs): Compass surveying, bearings, FB-BB, (Textbook1, Chapters 7, Topic 7.5, 7.6, 7.10), solve simple problems related to bearing calculations. Basic characteristics of soil (Textbook2, Chapters 29, Topic 29.5)

UNIT-IV 6 Hrs

Transportation Engineering: Planning and design aspects of transportation engineering, Transportation modes, Highways, Classification of highways, Railways, Characteristics of railways, Waterways, Advantages and disadvantages of water transportation, Classification of harbour and port, Air transport, Advantages and disadvantages of air transport.

Irrigation & Water Supply Engineering: Introduction, Types of irrigation, Dams and weirs, Types of dams and weirs, Purpose and functions, Water requirements, Factors affecting rate of water demand, Water requirements for buildings other than residences, Water requirements for irrigation.

Self-Learning Topics (SLT's): Harbour and port, (Textbook2, Chapters 30, Topic 30.6)

Dams, weirs, irrigation systems, (Textbook2, Chapters 31, Topic 31.4)

Textbooks:

- 1. K. Rangwala, "Essentials of Civil Engineering", Charotar Publishing House Pvt., Ltd., New Delhi,1st ed., 2012.
- 2. Satheesh Gopi, "Basic Civil Engineering", Pearson Publications, New Delhi, 1st ed., 2017.

Reference Books:

- 1. S. S. Bhavikatti, "Basic Civil Engineering", New Age International Pvt., Ltd., Publishers, 1st ed., 2018.
- 2. C. P. Kaushik, S. S. Bhavikatti, Anubha Kaushik, "Basic Civil and Environmental Engineering", New Age International Pvt., Ltd., 1st ed., 2010.

Web and Video link(s):

- 1. https://nptel.ac.in/courses/105106201 NPTEL Video Lecture on Introduction to Civil Engineering Profession by Prof. Ravindra Gettu and Prof. Koshy Varghese, Department of Civil Engineering, I.I.T. Madras.
- 2. https://youtube.com/watch?v=CsKddkqgwVk&t=280s NPTEL Video Lecture on What is Civil Engineering, Introduction to Civil Engineering Profession by Prof. Ravindra Gettu, Department of Civil Engineering, I.I.T. Madras.

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

- CO1: analyze civil engineering domains and apply planning norms for functional building design
- CO2: evaluate construction materials and techniques based on performance and application
- CO3: assess surveying and soil data to recommend appropriate foundation systems
- CO4: analyze transportation and water infrastructure choices for sustainable development

Cou	Course Articulation Matrix: U24CE107 ESSENTIALS OF CIVIL ENGINEERING													
	CO Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CE107.1	2	2	-	1	1	1	1	1	1	1	1	1	1
CO2	U24CE107.2	2	2	-	1	1	1	1	1	1	1	1	1	1
CO3	U24CE107.3	2	2	-	1	1	1	1	1	1	1	1	1	1
CO4	U24CE107.4	2	2	-	1	1	1	1	1	1	1	1	1	1
U24CE107		2.00	2.00	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

PRACTICUM -1						
Class: B.Tech. I/II/III/IV-Semester Branch: Common to all branches						
Course Code:	U24EL108	Credits:	1			
Hours/Week(L-T-P-O-E):	0-0-0-4-4	CIE Marks (%):	100			
Total Number of Teaching Hours:	-	ESE Marks (%):	-			

Course Learning Objectives(LOs):

This course will develop students' knowledge in/on...

LO1: literature review and identifying research gaps

LO2: implementing a project independently by applying knowledge to practice

LO3:preparing well-documented report and informative PPT

LO4: effective technical presentation and creating video pitch

Practicum is an independent project carried out by the student during the course period, under the supervision of allotted course faculty. It helps to reinforce the students 'theoretical knowledge and develop their ability to apply this knowledge to the solution of practical problems. Practicum's also prepare them for their MINI and MAJOR PROJECTs and for in dependent work in their chosen field that promotes creative abilities. Besides they provide Higher Order Cognitive

Abilities (HOCAs).

- (i) Practicum is a mandatory semester project work.
- (ii) Practicum is offered as a one credit course. Student has to earn 4 credits (one in each Semester from I to IV semesters)
- (iii) Allotment of Practicum topics for students:
- o **Practicum matrix:** In week (-1), the class teacher, in consultation with HoD, shall Prepare the practicum matrix of the section. The practicum matrix is the allotment of group of students to the different course faculty of the section, as shown below.

Course	U24MH101	U24PS102	U24EC103	U24CS104	U24EE105	U24CH106	
	B24XX001	B24XX011	B24XX021	B24XX031	B24XX041	B24XX051	
	B24XX002	B24XX012	B24XX022	B24XX032	B24XX042	B24XX052	
	B24XX003	B24XX013	B24XX023	B24XX033	B24XX043	B24XX053	
Students	B24XX004	B24XX014	B24XX024	B24XX034	B24XX044	B24XX054	
allotted	B24XX005	B24XX015	B24XX025	B24XX035	B24XX045	B24XX055	
to	B24XX006	B24XX016	B24XX026	B24XX036	B24XX046	B24XX056	
different	B24XX007	B24XX017	B24XX027	B24XX037	B24XX047	B24XX057	
courses	B24XX008	B24XX018	B24XX028	B24XX038	B24XX048	B24XX058	
	B24XX009	B24XX019	B24XX029	B24XX039	B24XX049	B24XX059	
	B24XX010	B24XX020	B24XX030	B24XX040	B24XX050	B24XX060	

- o In week (-1), the class teacher of a section shall collect 10 12 topics for practicum from each of the course teachers of that section.
- o The class teacher, in consultation with HoD shall allot the practicum topics to the students of that section in the following format.

CIRCULAR

Allotment of Practicum topics to students Section:.....

S.No.	Roll number of the student	Practicum topic allotted	Practicum Under the course	Course faculty	

Note:

- 1. The students should meet immediately the allotted course faculty for practicum and start working on the practicum with the guidance of course faculty.
- 2. To complete the Practicum, the student shall work in laboratories under supervision of allotted course faculty, in the allotted hours in the class work timetable and also outside the class work hours during week days.
- 3. The course faculty are advised to guide the allotted students for practicum during the semester course work.

(Signature of class teacher)

- (iv). To complete the practicum, the student shall work in laboratories under supervision of allotted course faculty, in the allotted hours in the class work timetable and outside the class work hours during week days.
- (v). There shall be only continuous Internal Evaluation (CIE) for practicum for a maximum of 100marks.
- (vi). The practicum course faculty shall evaluate & submit the final marks of the allotted students in week (N+1) to the respective class teacher.
- (vii). The class teacher shall collect the final marks of practicum of the students allotted to each course teacher and submit them to the CoE.
- (viii). Course faculty shall follow his/her own rubrics for practicum evaluation. Focus shall be on knowledge, skills & qualities acquired by the student during the practicum course
- (ix). A sample rubrics for assessment and evaluation of practicum is as follows:

Literature survey & Identification of research gaps	10 marks
Working model/process /software package/system developed	30 marks
Report writing (subjected to max of 30% plagiarism)	20 marks
Oral presentation with PPT and viva-voce	20 marks
Video pitch	20 marks
Total	100 marks

- <u>Note</u>: It is mandatory for the student to appear for oral presentation and viva-voce to qualify for course evaluation of Practicum.
- (a) **Practicum Topic**: Each student shall be allotted a topic for practicum by the course faculty member attached to him/her. Interested students can work on their own title for practicum, but with due approval from course faculty.
- (b) **Working Model**: Each student is required to develop a proto type/process/system/simulation model on the given practicum topic and demonstrate /present, during the allotted time, before the course teacher.

Report: Each student is required to submit a well-documented report on the allotted practicum topic as per the format specified by the course faculty. The student shall include answers to the following questions in the report and PPT presentation.

- What was the objective of the practicum assigned?
- What are the main responsibilities and tasks for practicum?
- o What knowledge and skills from the course work are applied in the practicum?
- What new knowledge and skills are acquired during the practicum?
- o In what ways, can the practicum be helpful for the professional career?
- What gaps are identified in your practicum work?
- What improvements or changes you suggest for addressing the identified gaps for future work?
- **d) Anti-Plagiarism Check:** The practicum report should clear plagiarism check as per the Anti-Plagiarism policy of the institute
- **e) Presentation:** Each student should prepare PPT with informative slides and make an effective oral presentation before the course teacher as per the schedule notified by the department
- f) **Video Pitch:** Each student should create a pitch video, which is a video presentation on his / her Practicum. Video pitch should be no longer than 5 minutes by keeping the pitch concise and to the point, which shall also include evidence like videos & pics at the time of implementing the practicum and also key points about his / her business idea/plan(*if any*) and social impact
- g) The student has to register for the Practicum as a supplementary examination in the following cases:
 - i) he/she is absent for oral presentation and viva-voce
 - ii) he/she fails to submit the report in prescribed format
 - iii) he/she fails to fulfill the requirements of Practicum evaluation as per specified guidelines

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

- **CO1**: synthesize literature survey, identify research gaps and define objective & scope of practicum problem
- CO2: apply knowledge to design & conduct experiments, utilize modern tools for solution of practicum problem and develop working model/process/system
- CO3: demonstrate the generic competencies in making a well-documented report portraying knowledge, skills, qualities acquired through practicum
- CO4: create a video pitch on practicum and make an effective oral presentation using PPTs

Course .	Course Articulation Matrix (CAM): U24EL108 PRACTICUM -1													
CO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	U24EL108.1	2	2	2	2	2	2	2	2	2	2	2	2	2
CO2	U24EL108.2	2	2	2	2	2	2	2	2	2	2	2	2	2
CO3	U24EL108.3	2	2	2	2	2	2	2	2	2	2	2	2	2
CO4	U24EL108.4	2	2	2	2	2	2	2	2	2	2	2	2	2
Ţ	U24EL108							2						
	3-HIGH,2-MEDIUM,1-LOW													

SOCIAL EMPOWERMENT ACTIVITY -1 / SELF ACCOMPLISHMENT ACTIVITY -1 (SEA -1/SAA-1)

Class: B.Tech. I-Semesters	Branch: Common to all branch	nes	
Course Code:	U24VA109	Credits:	1
Hours/Week (L-T-P-O-E):	0-0-0-2-2	CIE:	100%
Total Number of Teaching Hours:	-	ESE:	-

Course Learning Objectives (LOs):

This course will develop students' knowledge in /on...

- **LO1: holistic development** through activity-based learning to gain real-life experience which effectively help individuals deal appropriately with problems/challenges
- **LO2: positive mindset** by actively adopting optimism, acceptance, resilience, gratitude, mindfulness, and integrity and handling rejection in life
- LO3: skills for effective fieldwork practice, which include ethics, observation, communication, interviewing, problem solving, time management, organisation and documentation
- LO4: making a well-documented report and an effective oral presentation through PPTs portraying knowledge, skills, qualities acquired and social impact of the activity

Activity Based Liberal Learning about Life, Literature and Culture (ABLL@LLC) is introduced for building **generic competencies** in students. ABLL is aimed at all dimensional holistic growth of the learner. The holistic development includes the **physical, emotional, cognitive, spiritual and social aspects**. This is an area which opens the decision-making process, helps the student to develop creativity, an analytical mind, and builds resilience, confidence, hope, well-being and success. This will help student face the world with a greater degree of maturity, stoic and become a wholesome person in the society.

It is more than just learning from books to lead a successful life. These activity-based liberal learning courses, which help students to expand their social roles later in life, are offered under two sequels namely **SEA** (Social Empowerment Activities) and **SAA** (Self Accomplishment Activities)

These SEA/SAA courses also focus on building positive mindset: adopting optimism, acceptance, resilience, gratitude, mindfulness, and integrity in your life will help student develop and maintain a positive mindset.

- (a) Each SEA/SAA activity is treated as one credit course
- (b) Student must select one activity per semester, through first 04 semesters, from the courses listed under SEA/ SAA, before commencement of the semester.
- (c) Students are required to earn minimum 04 credits under SEA/SAA, by completing minimum 02 credits through SEA and minimum 02 credits through SAA

- (d) To complete these activities student shall work outside the class work hours, during weekends, holidays, semester breaks, etc.,
- (e) If a student is not able to attend/ fulfil performance requirements, he/she shall be dropped from the course and shall have to enrol in the forthcoming semesters. *Monitoring SEA/SAA*:
 - (a) **Nodal units:** The Student Activity Centre (SAC) and Centre for Innovation Incubation Research and Entrepreneurship (C-i²RE) shall act as nodal units for activities listed under SEA/SAA.
 - (b) During the semester period, the student has to acquire requisite knowledge, conduct fieldwork, acquire skills and propose unique solutions to the real-life problems
 - (c) **Knowledge Acquisition & Skilling**:
 - i. Students have to identify goals, acquire and accumulate knowledge on the chosen SEA/SAA activity
 - ii. For the activities related to social awareness/issues/challenges that affect society, use the knowledge base, apply relevant skills to analyse the issue and propose unique possible solutions to the social issues/challenges. Practice to acquire necessary skills to seek new opportunities in their personal and professional life.
 - iii. For the activities related to physical fitness, music, dance, fine arts, etc., guided practice sessions under supervision of expert/guru are to be planned and executed to acquire the benchmark skills to be demonstrated.
 - (d) **Fieldwork:** Fieldwork is an essential component of learning for gaining real-life experiences. In addition to knowledge acquisition & skilling, student has to take up fieldwork on the chosen activity, as part of SEA/SAA course.
 - i. This student-driven Fieldwork allow students to interact with the 'real world'. It is an autonomous learning (self-learning) situation that students are more actively involved during the activity and develop a deeper understanding and develop a more positive attitude.
 - ii. Fieldwork consists of three phases: preparation, the actual activity and feedback
 - iii. As part of fieldwork, student has to interact with at least two eminent personalities/achievers/renowned persons/inspiring and great personalities related to the activity chosen.
 - iv. Fieldwork will benefit students for any careers where they need to work with communities of people or which involves analysis of complex processes, especially social and cultural.
 - v. Certain skills are required for effective fieldwork, which include observation, communication, interviewing, problem solving, documentation, and more
 - vi. Other skills important for fieldwork practice include the ability to act in a crisis, to plan, set priorities, mobilize resources, and implement the plan effectively. These skills used in an integrated manner help students solve their problems and to develop one's own leadership style based on the need and culture of the place.
 - vii. Eminent personalities/achievers/renowned persons/inspiring and great personalities

Eminent personalities/ Achievers / Renowned personalities:

- (a). In case of socially relevant problems/ activities of SEA/SAA: Eminent personalities/ achievers include district administrative officers, Eminent Social workers / NGOs, other inspiring and great personalities
- (b). In case of Sports / Games and Cultural activities of SEA/SAA: Eminent coaches/ trainers/gurus, achievers who represented/won state level/national level /international level competitions, other inspiring and great personalities.
- viii. **For appointment to interact eminent personalities**: Student is expected to follow email etiquette rules and other appropriate polite communication etiquettes for getting appointment and time for interaction
 - ix. On fieldwork, student is expected to demonstrate solid time management, organisational and note taking skills during fieldwork
 - x. Ethics of fieldwork: Fieldwork is an educational process with commitment to positive values. All fieldwork should be planned and conducted in a way that is ethical, responsible and safe, for people, students, visited communities, if any, and all other stakeholders. Student is expected to maintain integrity and honesty. Avoid bias and deception. Protect the rights and well-being of people involved in fieldwork. The privacy, confidentiality and respect for the eminent people interacted should be maintained and their time, inputs & guidance are to be acknowledged
- xi. Student is expected to take care of health and Safety practices for fieldwork and travel
- xii. Student should remember that contrary to a *field trip or company visit*, **the emphasis in fieldwork is on acquiring skills**, and not on casually presenting theory and assessing.
- xiii. For the fieldwork, student shall go with a scientifically designed questionnaire and record the responses during interaction. These response sheets, along with geo-tagged pic of fieldwork (at the time of interaction & practise sessions, if any) shall be appended as annexures in the report to be submitted for course evaluation.
- xiv. **Feedback:** The learnings the student made out of interaction with eminent achievers shall be presented in the report as one of the chapters.
 - During feedback, the central focus is on the elaboration of the students' experience during fieldwork. Therefore, the student should create an end product, such as a demonstration/presentation and report in which they demonstrate a link between their experiences during fieldwork and the underlying theoretical concepts and ideas.
- (e) **Demonstration / Presentation and Report**: Student after presentation/demonstration of his/her achievements/work, shall get a certificate from the concerned nodal unit and submit a report, in the prescribed format, to the faculty counsellor for award of grade.
- (f) Flow process for completion of SEA/SAA course:

- i. *Faculty counsellor approval*: In week (-1), in consultation with faculty counsellor, every student shall, identifies minimum of 4 activities listed under SEA/SAA activities, lists their priority and fills the same in ONLINE REGISTRATION FORM FOR SEA/SAA (received in their domain mail id) to Dean, Student Affairs. Dean, Student Affairs shall release the section wise allotment of SEA/SAA courses to students along with the details of supervising faculty of nodal centre. The allotment details shall be shared to the SEA/SAA coordinator and the student through domain mail id of the student
- ii. *Identification of goals and preparation of action plan:* In week (1), the respective faculty coordinator(s) of nodal centres shall address the students allotted to them to educate them on fixing goals, plan of action for completion and evaluation. In consultation with nodal centre, based on the workflow of the allotted activity, every student shall identify the goals (of activity) & eminent personalities (to be visited during the field trip) and prepare action plan (oriented workflow) for attaining the identified goals.
- iii. *Field work:* Under the guidance of nodal centre, student shall complete the field work, based on the action plan, with the progress continuously monitored by the faculty counsellor and the nodal centre.
- iv. *Demonstration/ Presentation:* After completion of field work, student shall demonstrate/present his achievements (knowledge/skills gained during the activity) at the nodal centre in the presence of external experts/senior practitioners of the activity. After successful demonstration/presentation, the nodal centre shall provide a certificate of completion indicating that the student has completed the activity in the stipulated time.
- v. *Report writing:* After successful demonstration/presentation, student shall write a 2–3-page report and submit the same to the faculty counsellor. The report shall emphasize knowledge, skills and qualities acquired through the SEA/SAA activities. It shall also include the influence of these activities on enhancing confidence, positive change in life, decision making, transforming choices into desired actions/outcomes.
- (g) Assessment & Evaluation: There shall be only Continuous Internal Evaluation (CIE) for SEA/SAA. The SEA/SAA activities shall be evaluated at the end of the semester through respective evaluation processes, which shall include field work, presentation/ demonstration, submission of reports on the gathered data/information/ surveys, the details of which have been shown in below table. The department level SEA/SAA coordinator shall collect marks from the nodal centres and faculty counsellors, consolidate them, and submit the final grades to the examination branch, within one week of the last day of instruction. Evaluation of SEA/SAA activities shall be completed as and when students are ready, but not later than week (N+1).

The CIE for SEA/SAA is as follows:

Assessment	Maximum marks	Marks to be awarded by
l l		

Goal setting, Planning & Knowledge Acquisition	20	Nodal centre		
Field work	40	Nodal centre		
Demonstration/Presentation	20	Nodal centre		
Report submission	20	Faculty counsellor		
Total	100	-		

Note:

- (a) <u>Presentation/ Demonstration</u>: It is mandatory for the student to appear for demonstration and (or) oral presentation oral presentation to qualify for course evaluation. In case of presentation, student should prepare PPT with informative slides including the geo tagged photos of his/her field trips/interactions as per the schedule notified by the nodal centre. In case of demonstration, student must take timeslot from the nodal centre and demonstrate the skills learnt/improved during the allotted timeslot.
 - The necessary arrangements for demonstration shall be looked after the student in consultation with the coordinator with due permission from Head of the department.
- (b) **Report:** Each student is required to submit a well-documented report on the chosen SEA/SAA topic as per the format specified by *department level SEA/SAA* coordinator.
- (c) <u>Anti-Plagiarism Check:</u> The SEA/SAA report should clear plagiarism check as per the Anti-Plagiarism policy of the institute.
- (d) **Requirements for passing the course:** A student is deemed to have passed SEA/SAA if he/she
 - a. successfully demonstrates/presents the skills attained at the end of course as per the schedule notified by the nodal centre, <u>and</u>
 - b. scores a minimum of 40 marks in the CIE of the course
- (e) <u>Supplementary examination:</u> If a student fails in SEA/SAA activity of a particular semester, he must complete the same by enrolling it in the next higher semesters.

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

- **CO1**: integrate the five dimensions of physical, emotional, cognitive, spiritual and social aspects in life for holistic development and demonstrate social sensitivity
- CO2: interact effectively through written, oral and nonverbal communication with external world in a professional, sensitive and culturally relevant manner
- CO3: analyse the issues related to social empowerment / self-accomplishment, demonstrate problem-solving skills, articulate solutions and demonstrate social sensitivity
- CO4: demonstrate the generic competencies in making a well-documented report and an effective oral presentation with PPTs portraying knowledge, skills, qualities acquired through fieldwork/practice sessions and social impact of the course learning

Text / Reference book(s):

For knowledge acquisition, students shall refer to textbooks and web resources relevant to the course selected. Plan for fieldwork/practice sessions in coordination with SEA/SAA coordinator

Course (CAM)	Articulation	U	U24VA109ZZ SEA-1/SAA-1											
CO PC		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O 1	PS O2
CO1	U24VA109.1	-	-	-	-	-	2	2	2	2	2	2	1	1
CO2	U24VA109.2	-	-	-	-	-	2	2	2	2	2	2	1	1
CO3	U24VA109.3	-	-	-	-	-	2	2	2	2	2	2	1	1
CO4 U24VA109.4 2 2						2	2	2	2	2	1	1		
U24V	U24VA109 2 2 2 2 2 1 1							1						
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

Course Code: U24VAXYY(SE/SA)ZZZ X represents semester; YY represents SEA/SAA course serial number in that semester; SE- represents SEA activity or SA - represents SAA activity; ZZZ represents activity code from SEA/SAA baskets

Ex: If A student selects a SEA/SAA course as below:	Ex: If A student selects a SEA/SAA course as below:
Semester: 1	Semester: 4
SEA/SAA course serial number: 09	SEA/SAA course serial number: 10
SEA/SAA category: SEA	SEA/SAA category: SAA
course number: 302	course number: 206
The course code will be U24VA109SE302	The course code will be U24VA410SA206

EXPERT TALK SERIES-1						
Class: B.Tech. I -Semester Branch: Common to all branches						
Course Code:	U24AE110	Credits:	1			
Hours/Week (L-T-P-O-E):	0-0-0-1-1	CIE:	100%			
Total Number of Teaching Hours:	-	ESE:	-			

This course will develop students' knowledge in /on...

- LO1: 21st century skills needed for industry, current industry trends, challenges and innovations
- LO2: latest technology in practice and applying knowledge to solve real-world problems
- LO3: smart work, soft skills, professional etiquette, networking abilities
- **LO4:** making a well-documented report portraying the knowledge, skills, qualities acquired and the impact of the learning

In the 21st century, for successful career, degree alone won't suffice. Competencies are much more important.

- (a) You need to be aware of the real-world problems, industry working style, need to be confident and smart and you also need to know the tricks of the trade.
- (b) Learning from industry experts with real-world examples, is important to enhance your educational experience.
- (c) Enhanced graduate employability benefits all stakeholders. To effectively enhance employability and the immediacy of adding value to company/project, it is important that you are aware of what you are learning and its use in the workplace. The cognitive abilities viz., remember, understand, recall, and application of knowledge and other skills acquired in higher education can be maximized if you are clear on the purpose of your developed competencies and how to apply them in a range of complex situations.
- (d)Graduate employability could be enhanced through fostering lifelong learning, the development of a range of employability-related competencies and increased confidence and capacity in "reflecting on and articulating these capabilities and attributes in a range of recruitment situations".

But how would you know all this without venturing into the industry?

- (e) The answer is Industry **Expert Talk Series (ETS)**. Through ETS, we invite industry experts in different fields to deliver talks and interact with students.
- (f) Through Industry expert talks students get to know so much more that textbooks don't explain.
- (g) Students have the opportunity to learn from professionals who have achieved success in their respective fields. These speakers often share their personal

- experiences, case studies, and anecdotes, providing students with real-world examples and perspectives that go beyond theoretical concepts.
- (h)Our competency-focussed curriculum URR24 is designed to contribute greatly to the nurturing and development of each of these facets among students through ETS courses
- (i) ETS helps students gain improved industry engagement for an easier transition into the workplace, broader career progression opportunities and personal development.
- (j) In URR24 curriculum, Expert talk series (ETS) is offered as a course under **ability enhancement category of courses**.
- (k) Through ETS sessions, students get the chance to interact with industry regularly which helps them focus on the needs and requirements of current industry. This will not only enthuse the students with new ideas but also motivate them to understand what kind of 21st century skills are needed in industry and how they need to groom themselves.
- (l) Through ETS sessions, another benefit is that students learn the importance of soft skills like communication, presentation, email etiquettes, corporate grooming and dressing styles. Conversing with successful people is the biggest motivation and students gain in more ways than one through ETS sessions.
- (m) ETS enhances your learning in many ways for global opportunities for your career.
- (n) All in all, learning from industry experts, is a wonderful opportunity for student to getting acquainted with professional etiquette, acquiring professional knowledge, and getting to know the internal workings of an organization.
- (o) Salient features of ETS are hereunder:
 - (i) ETS is offered from I semester to VI semester.
 - (ii) ETS, in any given semester, is treated as one credit course
 - (iii) Students are required to earn six credits (from I to VI semester)
 - (iv) **Head, Centre for i**²**RE** shall be the **institute level ETS coordinator**
 - (v) Under this course, a minimum of 10 expert talks shall be organized in **online/offline mode** by the parent department / Centre for i²RE.
 - (vi) Each expert talk shall be for a minimum duration of 45 minutes (*but not exceeding 90 minutes*) followed by **online quiz/test** for 10 marks (10 MCQs/FiBs; *duration:* 10-15 *mins*), on the contents covered in the expert talk.
 - (vii) The Head C-i²RE shall share the marks obtained by the students in each of the quizzes / tests to the respective department ETS coordinators.
 - (viii) Each student shall attend a minimum of 6 expert talks and attempt the

corresponding quizzes/ tests conducted at the end of the talks.

- (ix) **Report on ETS:** At the end of semester, the student shall submit a well-documented report on the acquired knowledge and skills, in the prescribed format, to the department ETS coordinator.
- (x) **Evaluation:** There shall be only continuous Internal Evaluation (CIE) for ETS for a maximum of 100 marks
- (xi) The department ETS coordinator shall, in coordination with institute level ETS coordinator, submit the final scores to the CoE in week (N+1).
- (p) The CIE for ETS is as follows:

Rubrics for evaluation of ETS

Quiz score	60 mariles
(sum of best 6 quiz scores out of 10 quizzes. Each quiz evaluated for 10 marks)	60 marks
Attendance (out of 10 quizzes)	20 marks
Report in prescribed format (max 30% plagiarism)	20 marks
Total	100 marks

i. **Attendance**: Maximum of 20 marks shall be awarded based on the attendance maintained by the student over a maximum of 10 lectures.

$$Marks for attendance = \frac{Number of expert talks attended fully}{10} * 20$$

ii. Supplementary Exam:

- (a) Student has to register for ETS supplementary examination if he/she scores less than 40 marks in CIE
- (b) The ETS supplementary examination shall be conducted by the parent department, in physical mode, for 100 marks (MCQs/FiBs; duration: 2Hrs) on the content covered in ETS lectures.
- (c) Department ETS coordinator shall, in coordination with the institute level ETS coordinator, conduct the supplementary exam, and submit scores to the CoE
- (d) Exam material/resources for supplementary: Recorded videos of ETS arranged for that semester, which shall be made available on ETS webpage of institute website

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

- **CO1:** identify real-world problems, different career paths, industry requirements, emerging job roles, business practices and exploit new opportunities by staying upto-date with industry knowledge, trends and technology
- CO2: identify what 21st century employability-related skills and professional etiquette are must in a range of recruitment situations, what skills are absent in him/her, and demonstrate skill improvement
- CO3: interact with experts, exhibit confidence, demonstrate improved communication

and networking abilities potentially leading to mentorship opportunities, internships, or even future job prospects

CO4: demonstrate the generic competencies in making a well-documented report portraying knowledge, skills, qualities acquired through ETS sessions and impact of the expert talks

Course Articulation Matrix (CAM): U24AE110 EXPERT TALK SERIES-1														
	СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24AE110.1	1	1	1	1	1	1	2	1	2	1	2	1	1
CO2	U24AE110.2	1	1	1	1	1	1	2	1	2	1	2	1	1
CO3	U24AE110.3	1	1	1	1	1	1	2	1	2	1	2	1	1
CO4	U24AE110.4	1	1	1	1	1	1	2	1	2	1	2	1	1
U24AE110 1 1 1 1 1 1 2 1 2 1 2 1 1						1								
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

KAKATIYA INSTITUTE OF TECHNOLOGY & SCIENCE

Opp: Yerragattu Gutta, Hasanparthy (Mandal), WARANGAL - 506 015, Telangana, INDIA. काकतीय प्रैद्योगिकी एवं विज्ञान संस्थान, वरंगल - ५०६ ०१५ तेलंगाना, भारत కాకతీయ సాంకేతిక విజ్ఞాన శాస్త్ర విద్యాలయం, వరంగల్ - ಸಂ೭ ೦೧೫ ತಲಂಗಾಣ, ಭಾರತದೆತಮ

(An Autonomous Institute under Kakatiya University, Warangal)

Estd-1980 (An Autonomous Institute under Kakutiya Oniversity, Wallangut,

KITSW (Approved by AICTE, New Delhi; Recognised by UGC under 2(f) & 12(B); Sponsored by EKASILA EDUCATION SOCIETY)

Semester -II Syllabi

Stream-II

Sl.	Category		Course Title		Credits				
No.	Category	Code	Course Tide		T	P	O	E	C
1	BSC	U24MH201	Matrix Theory and Vector Calculus	2	1	-	6	9	3
2	BSC	U24PY202C	Engineering Physics from Pool - I	2	1	2	5	10	4
3	PCC	U24CE203	Strength of Materials	2	1	-	4	7	3
4	ESC	U24CE204	Data Structures through C	2	1	2	5	10	4
5	ESC	U24EE205C	Basic Electrical & Electronics Engineering from Pool - II	2	1	2	5	10	4
6	VAC	U24CY206	Environmental Studies	2	-	-	3	5	-
7	AEC	U24AE207	IDEA Lab Makerspace	-	-	2	2	4	1
8	SEC	U24SE208	Programming Skill Development (PSD) Lab - 1	-	-	2	2	4	1
9	ELC	U24EL209	Practicum-2	-	-	-	4	4	1
10	VAC	U24VA210	SEA-2 / SAA -2	-	-	-	2	2	1
11	AEC	U24AE211	Expert Talk Series-2	-	-	-	1	1	1
	Total:						39	66	23
	Summer/Inter-sem Bridge Courses (Approved by BoS and Dean,AA): 1 week to 10 days: 1 credit to each Bridge course under additional learning (will be printed on grade sheet)								

	Pool – I (Physics)								
Sr. No. Course Code Course Title									
1.	U24PY202A	Engineering Physics (for Mechanical Engineering)							
2.	U24CY202B	Engineering Physics (Common to CSM, CSD, CSN, CSO & IT)							
3.	U24CY202C	Engineering Physics(for Civil Engineering)							

	Pool - II (Basic Electrical & Electronics Engineering)							
Sr. No.	Sr. No. Course Code Course Title							
1.	U24EE205A	Basic Electrical and Electronics Engineering (for Mechanical Engineering)						
2.	U24EE205B	Basic Electrical Engineering (Common to CSM, CSD, CSN, CSO & IT)						
3.	U24EE205C	Basic Electrical and Electronics Engineering (for Civil Engineering)						

MATRIX THEORY AND VECTOR CALCULUS										
Class: B.Tech. II-Semester	Branch: Common to all branches									
Course Code:	U24MH201	Credits:	3							
Hours/Week(L-T-P-O-E):	2-1-0-6-9	CIE:	60(%)							
Total Number of Teaching Hours:	36 Hrs	ESE:	40(%)							

This course will develop students' knowledge in/on...

LO1: various methods of solving system of linear equations and eigen value problems

LO2: double integral, triple integral and their applications

LO3: vector differential calculus and applications

LO4: integration of vector valued functions and applications

UNIT-I 9 Hrs

Matrices: Rank of a Matrix, Elementary transformations of a matrix, Gauss Jordan method of finding the inverse, Normal form of a matrix, Consistency of linear system of equations, System of linear homogenous equations, Eigen values, Eigen vectors, Properties of Eigen values, Cayley Hamilton's theorem, Reduction to diagonal form, Factorization method (LU Decomposition)

Applications of Eigen value problems: Stretching of an elastic membrane, Eigen value problems arising from Mark of processes, Eigen value problems arising from population models, Leslie model

Self-Learning Topics(SLTs):Review of Matrices [Text1:topics2.1,2.2,2.3,2.4,2.5]PAQ –Normal form [Text 1, topic 2.7(7), Solved problems: 2.26, Practice problems: exercise 2.4 (9,10)] Additional problems on System of homo generous and non-homogeneous equations [Text1:topic 2.18, Solved problems: 2.52, Practice problems: exercise 2.10(13,14)] Additional problems on Eigen values and Eigen vectors [Text 2: topic 8.1, Solved problems:8.1(1,2), Practice problems: exercise 8.1(4,6)] Nature of Quadratic form [Text1:topic2.18, Solved problems: 2.52, Practice problems: exercise2.10 (13,14))

UNIT-II 9 Hrs

Multiple Integrals and Beta, Gamma functions: Double Integrals, change of order of integration, Double Integrals in polar coordinates, Area enclosed by plane curves, Triple integrals, Volumes of solids, Calculation of Mass for a planelamina, Beta function, Gamma function, Relation between Beta and Gamma functions (without proof)

Self-Learning Topics (SLTs): Review of integrals [Text1:topic Appendix VII (1) Additional problems on change of order of integration [Text1:topic7.2,Solved problems:7.4,7.6,Practice problems: exercise 7.1(9,14)) Centre of gravity of a plane lamina [Text1:topic7.10,Solved problems7.34,7.35, Practice problems :exercise 7.6(9,10)]Moment of Inertia of plane lamina [Text1: topic7.12(1,2), Solved problems :7.37, 7.38, Practice problems :exercise 7.7(1,4)] Additional problems on Volume of solids [Text1:topic 7.6, Solved problem: 7.21, Practice problems :exercise 7.4(12,25)]

UNIT-III 9 Hrs

Vector Calculus and its applications:-Vector Space, Linear dependent and independent vectors, Differentiation of vectors, Curves in space, Tangent, Principal normal, Bi normal, Curvature, Torsion, Velocity and acceleration, Scalar and vector point functions, Del applied to scalar point functions -Gradient, Geometrical interpretation, Directional derivative, Del applied to vector point functions -Divergence, Curl, Physical interpretation of divergence, Physical interpretation of curl, Del applied twice to point functions, Del applied to products of point functions, Decomposition of vector valued functions

Self-Learning Topics(SLTs): Review of vectors [Text 2: topics9.1,9.2,9.3] Vector identities [Text 1: topic 8.9, Solved problems: 8.22, 8.23, Practice problems: exercise 8.4 (13,14)] Additional problems on Directional derivatives[Text1:topic8.5(3), Solved problems: 8.13,8.14, Practice problems: exercise 8.3(4,6,8,9)]

UNIT-IV 9 Hrs

Integration of vectors: Line integral, Surfaces-Surface integral, flux across a surface, Green's theorem in the plane (without proof), Stoke's theorem (Relation between line and surface integrals) (without proof), Volume integral, Gauss divergence theorem (Relation between surface and volume integrals) (without proof), irrotational fields, solenoidal fields

Self-Learning Topics (SLTs): Additional problems on Green's theorem[Text 1: topic 8.13, Solved problems: 8.33, 8.35, Practice problems: exercise 8.8 (1,2,4)] Additional problems on Stoke's theorem [Text1: topics 8.14, Solved problems: 8.39, 8.40, Practice problems: exercise 8.9 (1,2)] Additional problems on Gauss Divergence theorem [Text 1: topic 8.16, Solved problems: 8.44, 8.46, Practice problems: exercise 8.10 (1,2)]

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

CO1: analyze eigen value problems using matrix theory

CO2: apply basic concepts of multiple integrals in evaluating physical quantities of real-life engineering problems

CO3: apply differential operators on vector and scalar point functions

CO4: solve line, surface, volume integrals and correlate these with applications of Green, Stoke and Gauss divergence theorems

Text book (s):

- 1. Grewal, B.S., *Higher Engineering Mathematics*, 46th ed., Delhi, Khanna Publishers, 2023. (Chapters 2, 7, 8)
- 2. Kreyszig E , *Advanced Engineering Mathematics*, 11th ed., Inc, U.K, John Wiely & sons, , 2023. (Chapter8 (8.2))

Reference Book(s):

- 1. Spiegel M, Vector Analysis- 4th ed., Schaum's Series, McGraw Hill, 2021.
- 2. S. S. Sastry, Engineering Mathematics, Vol.II, 4th ed., Prentice Hall of India, 2021.
- 3. Gilbert Strang, Introduction to Linear Algebra, 6th ed., Wellesley-Cambridge Press, 2022.

Web and Video link (s):

- 1. https://youtu.be/L4crGhtEX14?si=hyjAPgDheJOhXtYZ:NPTEL Video Lecture on Matrix Analysis with Applications /Dr.S.K.Gupta and Dr.Sanjeev Kumar/ IIT Roorkee
- 2. https://youtu.be/ksS_yOK1vtk?si=CNNA580IuszubPiX: NPTEL Video Lecture on Integral and Vector Calculus./ Prof. Hari Shankar Mahato/IIT Kharagpur

Cours	se Articulation Ma	1	U24MH201 Matrix Theory and Vector Calculus											
СО		PO 1	PO 2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24MH201.1	2	2	1	1	-	-	1	-	1	-	1	1	1
CO2	U24MH201.2	2	2	1	1	_	-	1	-	1	-	1	1	1
CO3	U24MH201.3	2	2	1	1	-	_	1	-	1	-	1	1	1
CO4	U24MH201.4	2	2	1	1	-	-	1	-	1	-	1	1	1
U24MH201 2		2	2	1	1	-	-	1	-	1	-	1	1	1
	3-HIGH,2-MEDIUM,1-LOW													

ENGINEERING PHYSICS (for Civil Engineering)									
Class: B.Tech. II-Semester	Branch: CE								
Course Code:	U24PY202C	Credits:	4						
Hours/Week(L-T-P-O-E):	2-1-2-5-10	CIE Marks:	60(%)						
Total Number of Teaching Hours: 60 Hrs ESE Marks: 40(%)									

This course will develop students' knowledge in/on...

LO1: properties of ultrasonic and applications of non-destructive testing (NDT) methods

LO2: basic principles, operation of lasers and optical fibers

LO3: fundamentals of crystallography and materials characterization techniques

LO4: principles of building acoustics, properties of magnetic and super conducting materials

THEORY COMPONENT	
UNIT-I	9 Hrs

Ultrasonic: Properties, Production of ultrasonic-Piezo-electric method; Determination of velocity in liquids using ultrasonic interferometer, Determination of velocity in solids-measurement of elastic constants in solids, Applications- Marine, Industrial and medical fields

NDT applications to Civil Engineering: Introduction, Advantages and limitations of non-destructive testing (NDT), Methods of NDT-Visual inspection of distressed structures, Magnetic particle testing, Eddy current testing and Ultrasonic testing of concrete- Normal beam Pulse echo testing, Normal beam pulse through transmission testing, Angle beam pulse echo testing

Self-Learning Topics (SLTs): fundamentals of ultra sound (Text1: topics 14.1, 14.2), Solved problems (Text1: Prob 14.3, 14.5). Practice problems (Text2:Prob5.1, 5.3, 5.4, 5.5).

UNIT-II	9 Hrs

Applied Optics and Lasers: Principles of interference, Diffraction phenomena and their applications (qualitative), Difference between conventional light and laser, Basic principles and characteristics of lasers, Absorption, Spontaneous and stimulated emission, Population in version, Pumping methods, Optical resonator, Types of lasers-Ruby laser, He-Ne Laser, Diode laser; Applications of lasers- Determination of particle size of fly ash and slags using lasers

Fiber Optics: Introduction, Total internal reflection, Optical fiber construction, Numerical aperture and acceptance angle; Types of optical fibers - Step index and graded index, Single and multimode, V-number; Power losses in optical fibers-Attenuation, Dispersion, Bending; Fiber optic communication system, Applications of optical fibers- Endoscopy, Fiber optic sensors (temperature and displacement)

Self- Learning Topics (SLTs): concept of wave and basic concepts-amplitude, wave length, frequency, phase, phase angle and general wave equation (Text1: topic 1.9), types of waves(Text1: Topic 1.10), reflection laws (Text1: topic 1.11).

UNIT-III 9 Hrs

Crystallography: Bonding in crystals, Classification of solids, Space lattice, Crystal structure, Unit cell, Brava is lattices, Lattice plane, Miller indices, Inter planar spacing in a cubic lattice, Atomic packing fraction (SC,BCC,FCC), Bragg's law, Classification of defects- Point defects, Line defects, Surface defects (qualitative)

Material Characterization Techniques: Principles for determination of materials structure by using Bragg's X-ray diffraction spectrometer (XRD); Study of morphology, Microstructure, Micro fractures using scanning electron microscope (SEM) and transmission electron microscope (TEM) for civil engineering materials

Self- Learning Topics (SLTs): Summary of unit cell characteristics (Text1: topic34.4), Solved problems (Text1:Prob3 4.15.2, Prob 3 4.5, Prob3 4.6, Prob3 4.7).

UNIT-IV 9 Hrs

Acoustics of Buildings: Introduction, Classification of sound, Characteristics of sound, Sound pressure level, Intensity, Absorption coefficient, Determination of absorption coefficient of civil engineering materials, Reverberation, Sabine's formula, Factors affecting acoustics of buildings and their remedies, Noise and its measurements, Sound proofing applications in civil engineering

Magnetic and Super conducting Materials: Introduction, Permeability, Magnetization, Susceptibility, Origin of magnetism, Bohr magneton, Ferro, Anti ferro and ferri magnetic materials, Hysteresis, Soft and hard magnetic materials, Applications of magnetic materials; Superconductivity, Meissner effect, Transition temperature, Isotope effect, Type-I and type-II superconductors, High T_csuperconductors, Applications of superconductors

Self-Learning Topics (SLTs): basic magnetism concepts (magnetic dipoles, B,H,I parameters) (Text1: topic 41.2, 41.3, Text2: topic 20.2), types of magnetic materials (Text2: topic 20.4), Solved problems:(Text1-Prob 41.1,Prob 42.1,Prob 42.2,Prob 42.3,Prob 42.5,Prob 42.11,Prob 42.13)

LABORATORY COMPONENT

List of Experiments

- 1. Linear Measurements by using Vernier calipers and screw gauge
- 2. Determination of (a) rigidity modulus of a given wire (b) moment of inertia of a ring using torsional pendulum
- 3. Determination of velocity of ultrasonic waves in liquid using ultrasonic interferometer
- 4. Determination of thickness of thin sheet using air-wedge method
- 5. Determination of slit width using He-Nelaser
- 6. Determination of wavelength of He-Nelaser using reflection and transmission diffraction grating
- 7. Determination of particle size of fly ash or slag cement powders using laser
- 8. Numerical aperture and acceptance angle of a given optical fiber
- 9. Preparation and study of body centered cubic and face centered cubic crystal models
- 10. Structural analysis of given X-ray diffraction spectra for a given concrete material
- 11. Determination of absorption coefficient of sound of given materials
- 12. Magnetic hysterias is-B-H curve tracing using CRO

Text book(s):

- 1. M.N. Avadhanulu, P.G.Khirsagar and T.V.S Arun Murthy, *A Text book of Engineering Physics*, 11th ed., New Delhi, S Chand Publishing, 2018.
- 2. V.Rajendran, Engineering Physics, 2nd ed., New Delhi, Mc Graw Hill Education, 2021.

Reference Book(s):

- 1. B.P. Singh and Devaraj Singh, *Building Science: Lighting and Acoustics*, 2nd ed., New Delhi, Dhanpat Rai Publications (P)Ltd., 2021.
- 2. P.K Mitra, *Characterization of Materials*, 2nd ed., New Delhi, PHL Learning Pvt. Ltd., 2021.
- 3. R.K. Gaur and S.L. Gupta, *Engineering Physics*, 8th ed., New Delhi, Dhanpath Rai and Sons, 2020.
- 4. David Halliday, Robert Resnick and S Krane, *Physics Volume I&II*, 5th ed., Wiley India Limited, 2014.

Web and Video link(s):

- 1. https://nptel.ac.in/courses/113106070,NPTELVideo Lecture on Theory and Practice of Non Destructive Testing, Dr. Ranjit Bauri, IIT Madras
- 2. https://nptel.ac.in/courses/113/105/113105101/NPTEL Video Lecture on Techniques of materials characterization, Prof. Shibayan Roy, Materials Science Centre, IIT Kharagpur
- 3. https://nptel.ac.in/courses/113/104/113104081/, https://nptel.ac.in/cour
- 4. https://onlinecourses.nptel.ac.in/noc24_mm28/previewNPTEL Video Lecture on Defects in Crystalline Solids(Part -I), Prof. Shashank Shekhar, IIT Kanpur

<u>Laboratory Manual</u> (for laboratory component):

- 1. Engineering Physics Laboratory Manual & Record Book, Department of PS, KITSW
- 2. A.K.Katiyar, C.K.Pandey, *Engineering Physics Theory and Practical*, 2nd ed., Wiley India Pvt. Ltd, 2017.

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

(based on cognitive skills acquired from theory component)

- **CO1:**determine the ultrasonic velocity, elastic constants and defects/cracks in solids using non-destructive testing methods
- **CO2:** evaluate properties of lasers and optical fiber parameters
- CO3: examine the crystal structures and defects in civil engineering materials using crystallography principles and material characterization techniques
- **CO4:** calculate reverberation time in building sand absorption coefficient of civil engineering materials; determine properties of the magnetic and super conducting materials

(based on psychomotor skills acquired from laboratory component)

- CO5: measure diameter of wire and hollow tubes using Vernier calipers and screw gauge; determine the rigidity modulus and velocity of ultrasonic waves
- CO6: determine the thickness of thin sheet, particle size of given fly ash, numerical aperture of an optical fiber, width of an arrows lit and wave length of laser
- CO7: calculate atomic packing fractions by constructing crystal models (BCC and FCC); analyze X- ray diffraction spectra of civil engineering materials
- **CO8**: determine the sound absorption coefficient of civil engineering materials and B-H curve tracing using CRO

Cou	Course Articulation Matrix(CAM):					U24PY202C- ENGINEERING PHYSICS (for Civil Engineering)									
CO PO1 PO2 PO3					PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	
CO1	U24PY202C.1	2	1	-	-	-	1	1	1	1	-	1	1	1	
CO2	U24PY202C.2	2	1	-	-	-	1	1	1	1	-	1	1	1	
CO3	U24PY202C.3	2	1	-	-	-	1	1	1	1	-	1	1	1	
CO4	U24PY202C.4	2	1	-	-	-	1	1	1	1	-	1	1	1	
CO5	U24PY202C.5	2	1	-	-	1	1	1	1	2	-	1	1	1	
CO6	U24PY202C.6	2	1	-	-	1	1	1	1	2	-	1	1	1	
CO7	U24PY202C.7	1	1	1	-	1	1	1	1	2	-	1	1	1	
CO8	U24PY202C.8	2	1	-	-	1	1	1	1	2	-	1	1	1	
U	J 24PY202 C	2	1	1	1	1	1	1	1	1.5	•	1	1	1	
				3-I	HIGH	, 2-M	EDIU	M, 1-	LOW		•	•	•		

STRENGTH OF MATERIALS									
Class: B.Tech. II-Semester Branch: Civil Engineering									
Course Code:	U24CE203	Credits:	3						
Hours/Week (L-T-P-O-E):	2-1-0-4-7	CIE:	60(%)						
Total Number of Teaching Hours:	36 Hrs	ESE:	40(%)						

This course will develop students' knowledge in / on...

LO1:types of stresses, strains and elastic modulii

LO2::bending and shearing stresses in beams subjected to flexure

LO3:torsional behavior of circular shafts and compression springs

LO4:behaviour of thin cylinders and Principal stresses

UNIT-I 9 Hrs

Simple stresses and strains: Types of stresses, strains, stress–strain diagram, elastic limit, Hooke's law, bars of varying sections, uniformly tapering circular and rectangular sections, elongation of bars due to self-weight.

Elastic Modulii: Elastic constants, longitudinal strain, lateral strain, Poisson's ratio, complimentary shear stress, state of simple shear, modulus of elasticity (E), modulus of rigidity(N), bulk modulus(K),relation between E,N&K, strain energy, resilience.

Self-Learning Topics (SLTs): Derivations of stress and elongation of uniform cross-section bar, taperrod, and conical bar due to self-weight(Text1:topics1.5,1.8,1.9), relation between the elastic Constants (Text1:1.11.1,1.11.2), stresses due to different types of loads(Text1:topics:15.3).

UNIT-II 9 Hrs

Bending stresses in beams: Assumptions, theory of simple bending, application of bending equation and calculation of bending stresses in beams of homogeneous and fletched beam material, beams of uniform strength.

Shearing stresses in beams: Shearing stress due to bending, variation of flexural shear stress distribution across rectangular, triangular, circular, flanged section, shear resilience.

Self-Learning Topics (SLTs): Derivation of bending equation (Text1: topics 5.1), Solved problems(Text1: Prob 5.22, 5.23), Practice problems (Text1: prob 19, 20), Derivation of shearing stressequation(Text1:topics7.2), Solved problems (Text1:topics7.13,7.14,7.16), Practice problems (5&6)

UNIT-III 9 Hrs

Torsion of Circulars hafts: Theory of pure torsion in solid and hollow circular shafts, shear stresses, angle of twist, power transmitted by shaft.

Springs in compression: Types of springs, functions of springs, closed-coiled and open-coiled helical spring subjected to axial load and axial twist, springs in series and parallel.

Self-Learning Topics (SLTs): Derivation of torsion equation (Text1: topics 13.3), comparison of solid and hollow shafts (Text1: topic 13.9), Shafts in series and parallel (Text1: topics 13.10, 13.11), derivation for deflection, stiffness & energy stored in closed coil helical spring equations (Text1:topics 14.3.1), Energy stored in flat spiral spring (Text1:topics14.7).

UNIT- IV 9 Hrs

Thin Cylinders: Analysis of thin-walled pressure vessels, hoop stress, longitude inal stress. **Principal stresses:** Definition, normal and shear stress, principal stresses, principal planes, and their graphical representation by Mohr's circle.

Self-Learning Topics (SLTs): Circumferential and longitudinal stress equations of thin cylinders (Text 1: topics10.2.1,10.2.2), Cylindrical shell with hemispherical ends (Text1:topic10.2.5), two Mutual perpendicular direct stresses (Text1:topic2.3), solved problems (Text1:topic2.9,210).

Course Learning Outcomes €(COs):

After completion of this course, the students should be able to,

CO1:relate various types of stresses, strains and elastic modulii

CO2:evaluate the bending and shear stresses for beams in flexure

CO3:analyze the behavior of springs and circular shafts subjected to pure torsion

CO4:estimate stresses in thin cylinders and locate principal planes by Mohr's circle

Text book(s):

- 1. Dr. R.K.Rajput, *Strength of Materials*, 7th ed., Delhi, S.Chand Publishers, 2022.
- 2. Gunneswara Rao T.D., Mudimby Andal *Strength of Materials*, 1st ed., Cambridge University Press, 2018.

Reference Book(s):

- 1. Timoshenko and Gere, *Mechanics of Materials*, 8th ed., McGraw Hill International publishers, 2014.
- 2. PunmiaB.C., Arun K.Jain, Ashok K.Jain, *Mechanics of Materials*, 2nd ed., New Delhi, Laxmi Publications, 2012.
- 3. Subramanian R., Strength of Materials, 3rd ed., Oxford University Press, 2016.
- 4. Ramamrutham S., *Strength of Materials*, 18th ed., New Delhi, Dhanpat Rai & Sons publications, 2014.

Web and Video link(s):

- 1. <u>https://nptel.ac.in/courses/112107146</u> NPTEL Video Lecture on Strength of Materials by Dr.Satish C Sharma, IIT Roorkee.
- 2. https://archive.nptel.ac.in/courses/105/105/105105108/NPTEL Video Lecture on Strength of Materials by Prof. Sriman Kumar Bhattacharya, IIT Kharagpur.
- 3. https://onlinecourses.nptel.ac.in/noc23_me140/preview NPTEL Video Lecture on Strength of Materials by Prof. K.Ramesh, IIT Madras.

Cours	e Articulation N		U24CE203 Strength of Materials											
	СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CE203.1	3	2	1	-	-	-	1	1	1	-	1	2	1
CO2	U24CE203.2	3	2	1	-	-	-	1	1	1	-	1	2	1
CO3	U24CE203.3	3	2	1	-	-	-	1	1	1	-	1	2	1
CO4	U24CE203.4	3	2	1	-	-	-	1	1	1	-	1	2	1
U24CE203		3	2	1	-	-	-	1	1	1	-	1	2	1
	3-HIGH,2-MEDIUM,1-LOW													

DATA STRUCTURES THROUGH C										
Class: B.Tech. II-Semester	Branch: Common to all branches									
Course Code:	U24CE204	Credits:	4							
Hours/Week (L-T-P-O-E):	2-1-2-5-10	CIE:	60(%)							
Total Number of Teaching Hours:	60 Hrs	ESE:	40(%)							

This course will develop students' knowledge in/on...

LO1:time complexity, space complexity, array operations, and dynamic memory allocation

LO2:stacks and various forms of queues

LO3:various types of linked lists

LO4:various sorting techniques and hashing techniques

20 1. various sorting teerinques arta rationing teeriniques	
THEORY COMPONENT	
UNIT-I	9 Hrs

Data Structures: Basic terminology, Classification of data structures, Applications and operations on data structures, Time and space complexity

Arrays: Operations on arrays-traversing an array, Inserting an element in an array, Deleting an element from an array, Searching an element using binary search and their complexities, **Dynamic Memory Allocation**: Memory allocation functions, Dynamic memory allocation for single and two dimensional arrays

Self- Learning Topics (SLTs): Three dimensional and n-dimensional arrays (Text1: topics 2.4.3), passing arrays to functions and pointers (Reference1: topics 3.6, 3.7), Practice problems (Text1: Prob2.3, Reference1: Prob1, Prob2, Prob3, Prob4)

UNIT-II 9 Hrs

Stacks: stacks, Array representation of stacks, Operations on a stack-push and pop; Multiple stacks, Applications of stacks- recursion, Fibonacci series, tower of Hanoi, evaluation of expressions (infix to postfix conversion, evaluation of postfix expression)

Queues: queues, Array representation of queues, Double ended queues, Circular queues

Self- Learning Topics (SLTs): Infix to prefix (Reference1: topics 7.7.3), priority Queue (Reference1:8.4.3), Solved problems (Reference1: Prob 7.7.1, Prob 7.7.2), Practice problems (Text1: Prob 4.5, Prob4.11, Prob5.7, Prob5.9)

UNIT-III 9 Hrs

Linked Lists: Basic terminologies, Linked list versus arrays, Memory allocation and de-allocation for a linked list, Singly linked list, Circular linked list, Doubly linked list, Circular doubly linked list (linked list operations-traversing, searching, inserting, deleting), Representing stack and queue using linked list

Self - Learning Topics (SLTs): Merging (Text1: topics 3.3), Skip list (web link: https://www.geeksforgeeks.org/skip-list/), Deallocation strategy (Text1: topic 3.9), Solved problems (Text1:Prob3.6.1,Prob3.6.2), Practice problems (Reference1:Prob5.5,Prob5.7,Prob5.9)

UNIT-IV 9 Hrs

Sorting Techniques: Selection sort, Insertion Sort, Shell sort and radix sort, Time complexities of sorting

Hashing: Hashing techniques, Collision resolution techniques, Closed hashing, Open hashing, Comparison of collision resolution techniques

Self- Learning Topics (SLTs): Two way insertion sort (*Text1: topics 10.3.4*), Comparison of sorting techniques (*Reference1: topics 14.16*) Solved problems (*Reference1: Prob 15.5, Prob 15.6, Prob15.7*), Practice problems(*Text1:Prob6.4*)

LABORATORY COMPONENT

List of Experiments

Experiment-I

- 1. Program to implement initialization of array and perform traversal operations in both the directions
- 2. Program to implement searching operation on array using Linear Search
- 3. Program to display the count of occurrences of every number in an array

Experiment-II

- 4. Program to implement searching operation on array using Binary Search
- 5. Program to implement insertion operation on array
- 6. Program to implement deletion operations on array

Experiment-III

- 7. Program to implement initialization of arrays and traversal operation with DMA
- 8. Program to implement matrix addition and subtraction with DMA

Experiment-IV

- 9. Program to implement matrix multiplication with DMA
- 10. Program to implement stack operations
- 11. Program to convert infix expression into postfix

Experiment-V

- 12. Program to evaluate given post fix expression
- 13. Program to define recursive function to solve tower of hanoi puzzle
- 14. Program to display the Fibonacci series with the help of recursive function
- 15. Program to implement Multi Stack

Experiment-VI

- 16. Program to implement queue operations using arrays
- 17. Program to implement circular queue operations using arrays
- 18. Program to implement double ended queue operations using arrays

Experiment-VII

19. Program to create single linked list and implement its operations Note:-Linked list Operations: i) traversing ii) inserting iii) deleting iv) searching v) reversing vi) concatenation

Experiment-VIII

- 20. Program to create circular linked list and implement its operations
- 21. Program to create double linked list and implement its operations

Experiment-IX

22. Program to create circular double linked list and implement its operations

Experiment-X

- 23. Program to implement stack operations using linked list
- 24. Program to implement queue operations using linked lis

Experiment-XI

- 25. Program to implement selection sort
- 26. Program to implement insertion sort

Experiment-XII

- 27. Program to implement shell sort
- 28. Program to implement radix sort
- 29. Program to implement hash table.

Text book(s):

1. Debasis Samanta, Classic Data Structures, Prentice Hall India, 2nd ed., 2009

Reference Book(s):

- 1. Reema Thareja, Data Structures Using C, 2nd ed., Oxford University Press, 2014
- 2. Balagurusamy E, Data Structure Using C, 1st ed., McGraw Hill Education, 2017
- 3. Richard F. Gilberg and Behrouz A. Forouzan, *Data Structures: A Pseudo code Approach with C*, C engage Learning, 2nd ed.,, 2007

Web and Video link(s):

https://nptel.ac.in/courses/106106130;NPTEL Video Lecture on Programming and Data Structures Dr.N.S. Narayana Swamy, CSE, IIT Madras.

Laboratory Manual(for laboratory component):

1.Data Structures through C Laboratory Manual and Record Book, Department of CSE (AI&ML), KITSW.

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

(based on cognitive skills acquired from theory component)

- CO1:analyze and implement array operations by utilizing dynamic memory allocation and evaluating their time and space complexities
- CO2: analyze and implement stack and queue data structures by utilizing array representations and evaluating their applications and operational complexities
- CO3:analyze and implement various types of linked lists by utilizing dynamic memory allocation techniques and evaluating their operational complexities
- CO4:develop various sorting algorithms, analyze their time complexities, and apply hashing techniques with collision resolution methods, comparing their efficiencies

(based on psychomotor skills acquired from laboratory component)

- CO5:develop and test basic data structures and array operations, including dynamic memory allocation to evaluate their performance and complexity
- CO6:apply the linear data structures such as stacks and queues and perform various operations using LIFO or FIFO order respectively
- CO7:solve problems using various linked list representations for efficiently storing And retrieving the data
- CO8:apply different sorting techniques on unsorted data and sort them in an order, able to store the data using hashing techniques to retrieve the data very effectively

Cours	e Articulation		U240	CE204	DAT	A STR	RUCT	URES	THR	OUGI	нС			
СО		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CE204.1	2	2	2	1	3	0	1		9 1	10	1	2	1
COI	U24CE2U4.1	2	2	2	1	•	•	1	-	1	-	1	2	1
CO2	U24CE204.2	2	2	2	2	-	-	1	-	1	-	2	2	2
CO3	U24CE204.3	2	2	2	2	-	-	1	-	1	-	2	2	2
CO4	U24CE204.4	2	2	2	2	-	-	1	-	1	-	2	2	2
CO5	U24CE204.5	2	2	2	1	-	-	1	1	1	-	1	2	1
CO6	U24CE204.6	2	2	2	2	-	-	1	1	1	-	2	2	2
CO7	U24CE204.7	2	2	2	2	-	-	1	1	1	-	2	2	2
CO8	U24CE204.8	2	2	2	2	-	-	1	1	1	-	2	2	2
U24CE204		2	2	2	1.75	1	1	1	1	1	-	1.75	2	1.75
				3 - HI	GH,2-	MED	IUM,	1-LOV	N					

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING										
Class: B.Tech. I-Semester/II-Semester	Branch: Common to CE & ME									
Course Code:	U24EE205C	Credits:	4							
Hours/Week(L-T-P-O-E):	2-1-2-5-10	CIE:	60(%)							
Total Number of Teaching Hours:	60 Hrs	ESE:	40(%)							

This course will develop students' knowledge in/on...

LO1: network elements and DC circuits

LO2: 1-ØAC and 3-ØAC circuits

LO3: construction, operating principles & applications of DC &AC machines and renewable energy sources

LO4: concepts of diodes, rectifiers and transistors

THEORY COMPONENT UNIT-I 9 Hrs

DC circuits: Network elements, Linear & non-linear elements, Active & passive elements, Unilateral & bilateral elements, Ohm's law, Power, Energy, Kirchhoff's laws, Resistances connected in series and parallel, Voltage divider rule & Current divider rule **DC Circuit analysis:** Source trans formation, Mesh analysis & Nodal analysis

Self-Learning Topics (SLTs): Definitions of charge, current, & voltage (Text1: Topics1.2,), Solved problems (Text1:Prob3.10, 3.11&3.12), Practice problems (Text1: Chap -3, Prob 4,5, 7&8)

UNIT-II 9 Hrs

1-Ø **AC circuits:** R.M.S value, Average value, Peak factor and form factor of a sine wave, Concept of phasor, Phase and phase difference, Rectangular and polar form representation, Sinusoidal steady state analysis of R, L, C, Series RL, RC, RLC circuits, Concept of reactance, Impedance, Complex power, Real power, Reactive power and Power factor

3- Ø **AC circuits**: Generation of 3**-** Ø voltages, Advantages, Disadvantages, Applications of three phase system, Voltage & Current relationships of line and phase values for balanced star and delta connections

Self-Learning Topics (SLTs): Expression for RMS & Average value (Text1: Topic, 4.4 & 4.5) Solved problems (Text1: Prob4.10,4.12, 4.13 & 4.14), Practice problems (Text1: Chap-4, Prob 8, 9, 10 & 12)

UNIT- III 9 Hrs

Electrical Machines and Renewable Energy Sources (Qualitative treatment): Construction, Principle of operation, characteristics & applications of 1-Ø transformer, 3-Ø induction motor, 1-Ø induction motor, DC motor, Step per motor, and BLDC motor Renewable Energy Sources: Solar Photovoltaic, Wind, Waste to energy & Bioenergy

Self-Learning Topics (SLTs): EMF equation of a Transformer (Text1:Part-II Topic,4.4.2) Solved problems (Text1: Part-II Prob 4.5,4.6 & 4.7), Practice problems (Text1: Part-II Prob 5.2, 5.3 & 5.4), Practice problems (Text1: Part-II Prob 6, 7 & 8)

UNIT-IV 9 Hrs

Electronic Devices and Circuits: P-N Junction diode, volt-amp characteristics, Zener diode, volt-amp characteristics, Half-wave rectifier and Full-wave rectifier (centerapped), Bi-polar Junction Transistor- symbol, Construction and operation of N-P-N and P-N-P transistors, Characteristics of BJT (CE, CB & CC configurations), Applications of diodes and transistors for civil and Mechanical engineers

Self-Learning Topics (SLTs): Classification of Semiconductors (Text2:topics1.2), Solved problems (Text2:Prob 1.2,), Zener diode Applications (Text2:1.15), Solved problems (Text2: Prob 2.1 & 2.4), Types of transistors (Text2: topics 3.5)

LABORATORY COMPONENT

List of Experiments

- 1. Verification of voltage divider rule and current divider rule
- 2. Verification of Mesh Analysis
- 3. Verification of Nodal Analysis
- 4. Determination of internal parameters of achokecoil
- 5. Impedance calculations and phasor representation of RL series circuit
- 6. Impedance calculations and phasor representation of RC series circuit
- 7. Loadteston1-phasetransformer
- 8. Single phase bridge rectifier using R load
- 9. Zener diode as voltage regulator
- 10. Input and output characteristics of BJT
- 11. Verification of Kirchoff's laws using PSPICE/MATLAB
- 12. Interfacing Sensors with Arduino using TINKERCAD
 - i. LED blinking
 - ii. IR Sensor
 - iii. Ultrasonic Sensor
 - iv. Voltage Sensor
 - v. Current Sensor
 - vi. Speed Sensor

Text book(s):

- 1. K.Uma Rao, *Basic Electrical Engineering*, 2nd ed., New Delhi, Pearson Education, 2022. (Unit-I, II & III)
- 2. S Salivahanan & N Suresh Kumar, *Electronic Devices and Circuits*, 4th ed., New Delhi, Tata McGraw- Hill Publication, 2022. (Unit-IV)

Reference Book(s):

- 1. B.L.Thereja, A.K.Thereja, *Electrical Technology (Vol. I&II)*, 7th ed., New Delhi, S. Chand & Company Ltd, 2020.
- 2. Edward Hughes, *Electrical & Electronics Technology*, 12th ed., New Delhi, Pearson Education, 2022.
- 3. D.P.Kothari and I.J.Nagrath, *Basic Electrical Engineering*, 4th ed., New Delhi, Tata Mc Graw Hill, 2020.
- 4. Chakravarthy A, Sudhipanath and Chandan Kumar, *Basic Electrical Engineering*, 2th ed., New Delhi, Tata Mc Graw Hill Ltd, 2020.

Web and Video link (s):

https://nptel.ac.in/courses/108/105/108105112//;NPTEL Video Lecture on Fundamentals of Electrical Engineering by Prof. Debapriya Das, Professor of EED, IITK Kharagpur.

Laboratory Manual (for laboratory component):

1. Basic Electrical & Electronics Engineering Laboratory Manual and Record Book, Department of EEE, KITSW.

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

(based on cognitive skills acquired from the theory component)

CO1: determine voltage, current & power in electrical circuits using network reduction techniques

CO2: determine impedance, voltage, current, and power in 1- ØAC circuits & determine line and phase quantities in 3- Ø AC circuits

CO3: select a suitable electrical machine for the given applications

CO4: determine the voltage and current characteristics of diodes and transistors

(based on psychomotor skills acquired from laboratory component)
CO5: validate mesh and nodal analysis

CO6: determine the impedance of series RL&RC circuits

CO7: determine the efficiency of a transformer by conducting a load test and verify Kirchhoff's laws using PSPICE

CO8: determine the characteristics of BJT and determine the parameters of a rectifier circuit

Cours	se Articulation N	Aatri y	(CAM	(I): [J 24 EE	205C:	Basic	Electr	ical &	Elect	ronics	Engin	eering	
	CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	U24EE205C.1	2	1	-	-	-	-	1	1	1	1	1	2	1
CO2	U24EE205C.2	2	2	-	-	-	-	1	1	1	1	1	2	1
CO3	U24EE205C.3	3	3	1	1	1	1	1	1	1	1	1	2	1
CO4	U24EE205C.4	3	3	1	1	1	1	1	1	1	1	1	2	1
CO5	U24EE205C.5	2	1	-	-	-	-	1	1	1	1	1	2	1
CO6	U24EE205C.6	2	2	-	-	-	-	1	1	1	1	1	2	1
CO7	U24EE205C.7	3	3	1	1	1	1	1	1	1	1	1	2	1
CO8	U24EE205C.8	3	3	1	1	1	1	1	1	1	1	1	2	1
U	U24EE205C 2.5 2.25 1			1	1	1	1	1	1	1	1	1	2	1
	3-HIGH,2-MEDIUM,1-LOW													

ENVIRONMENTAL STUDIES									
Class: B.Tech.I Semester	Branch: Common to CE,EEE,ECIE,								
	ECE&CSE								
Course Code:	U24CY206	Credits:	0						
Hours/Week(L-T-P-O-E):	2-0-0-3-5	CIE:	60(%)						
Total Number of Teaching Hours:	24 Hrs	ESE:	40(%)						

This course will develop students' knowledge in/on...

LO1: natural resources and their usage more equitably

LO2: ecosystem and the importance of biodiversity conservation

LO3: environmental pollution and it's control measures LO4: environmental legislation and green methodology

UNIT-I 6 Hrs

The Multidisciplinary Nature of Environmental Studies: Definition, Scope and importance

Natural Resources: Forest Resources-Use and over exploitation of forests, Deforestation, Timber extraction, Mining, Dams and their effects on forests and tribal people; Water Resources -Use and over-utilization of surface and ground water, Floods, Drought, Conflicts over water; Mineral Resources-Environmental effects of extracting and using mineral resources; Energy Resources-Renewable and non-renewable energy sources, Use of alternate energy sources

Self -Learning Topics (SLTs): Use and over-utilization of surface and ground water (Text1: unit 2, topic: 2.2.2) world food problems (Text 1: unit 2,topic 2.2.2)

UNIT-II 6 Hrs

Ecosystem and Biodiversity:

Ecosystem: Concepts of an ecosystem, Food chain, Food webs, Ecological pyramids, Energy flow in the ecosystem and ecological succession

Biodiversity and its Conservation: Introduction, Definition, Genetic, Species and ecosystem diversity, Value of biodiversity, Biodiversity in India, Hotspots of biodiversity, Man-wild life conflicts, Endangered and endemic species of India; In-situ and Ex-situ conservation

Self-Learning Topics (SLTs): Introduction and definition of biodiversity (Text1:unit 4,topic 4.1)

UNIT-III 6 Hrs

Environmental Pollution: Global issues- Global climatic change, Greenhouse gases, Effects of global warming, Ozone layer depletion

International Conventions / Protocols: Earth summit, Kyoto protocol, Montreal protocol **Environmental Pollution-** Causes and effects of air, Water, Soil, Marine and noise pollution with case studies

Solid and Hazardous Waste Management: Introduction, Types, Effects of urban industrial and nuclear waste

Natural Disaster Management: Introduction to disaster, Management of disaster, Disaster management of flood, earth quake, cyclone and landslides, Role of information technology in environment and human health

Self-Learning Topics (SLTs): Role of individual in prevention of pollution (Text1: unit 5, topic5.10)

UNIT-IV 6 Hrs

Social Issues and the Environment: Role of Individual and Society, Water conservation, Rain water harvesting

Environmental Protection/Control Acts: Air (prevention and control of pollution) act 1981, Forest conservation act (1980 and 1992), Wild life protection act 1972, Environment protection act 1986, Issues involved in enforcement of environmental legislations

Green Methodology: Principles of green chemistry, Green methods in electronic production, Impact of electronic waste on public health and environment; United nations goals of sustainable development

Self-Learning Topics (SLTs): Water (prevention and control of pollution) act 1974 (Text1: unit 6, topics6.10), Water pollution cess act1977 (Text1:unit 6, topics6.11)

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

CO1: identify the natural resources and practice their usage more equitably

CO2: develop an action plan for sustainable alternatives and conserving biodiversity

CO3: examine and perceive the solutions for the environmental pollution

CO4: adapt issues involved in enforcement of environmental legislation and green methodology

Text book(s):

1.Erach Bharucha, *Text Book of Environmental Studies for Under Graduate Courses*, 3rd ed., Hyderabad, Universities Press (India) Pvt. Ltd, 2021.

Reference Book(s):

- 1. Y. Anjaneyulu, *Introduction to Environmental Science*, 1st ed., Hyderabad, B.S. Publications, 2020 (reprint).
- 2. Gilbert M.Masters, *Introduction to Environmental Engineering & Science*, 3rd ed., Prentice Hall of India, 2023.
- 3. Anubha Kaushik, C.P. Kaushik, *Environmental Studies*, 5th ed., New Delhi, New Age International Publishers, 2021.
- 4. R. Rajagopalan, *Environmental Studies from crisis to cure*, 3rd ed., New Delhi, Oxford University Press, 2018.

Web and Video link(s):

1. https://archive.nptel.ac.in/noc/courses/noc22/SEM1/noc22-ch27/video lecture on renewable energy resources by Prof. Vaibhav. V. Goud and Dr. R. Anandalakshmi, Dept. Of Chemical Engineering, Guwahati.

Cours	e Articulation	Matr	ix (CA	M): U	24CY2	206: El	VIRC	NMI	ENTA	L STU	DIES			
	CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO ₂
CO1	U24CY206.1	2	1	2	1	-	1	-	1	-	-	-	-	-
CO2	U24CY206.2	-	-	2	-	-	2	-	1	-	-	-	-	-
CO3	U24CY206.3	1	2	1	-	-	1	1	1	-	-	-	-	-
CO4	U24CY206.4	-	-	1	-	-	2	-	1	ı	1	-	-	-
	U24CY206 1.50 1.50 1.50					-	1.50	1	1	•	ı	-	-	-
				3-I	HIGH	, 2-MI	EDIUN	1, 1-L0	OW					

IDEA Lab Makerspace									
Class: B.Tech. I Semester Branch: Common to all branches									
Course Code:	U24AE207	Credits:	1						
Hours/Week (L-T-P-O-E):	0-0-2-2-4	CIE:	60 %						
Total Number of Lab Hours:	24 Hrs	ESE:	40 %						

This course will develop students' knowledge in /on...

LO1: carpentry and CNC wood router

LO2: mould for sand casting and arc welding joints

LO3: laser engraving, 3D printing and robots in manufacturing

LO4: Printed Circuit Board (PCB) and Internet of Things (IoT)

LABORATORY COMPONENT

S. No.	Creative Fabrication Technology	List of Experiments							
1.	Carpentry	Prepare a half lap dovetail joint							
2.	CNC Wood Router	Perform wood carving using CNC Wood Router							
3.	Foundry	Prepare a sand mould using single piece pattern							
4.	Welding	Prepare a single V-butt joint on mild steel plates using AC arc welding machine							
5.	Injection Moulding	Prepare a plastic product using Injection moulding machine							
6.	Laser Engraving	Perform key chain by using CO ₂ laser cutting machine							
7.	2D Driestin a	Prepare a key chain on 3D printer with the given dimensions							
8.	3D Printing	Prepare a Spur Gear on 3D printer with the given dimensions							
9.	Robotics	Perform basic pick-and-place operation using robot							
10.	Printed Circuit Board (PCB)	Design and fabricate a PCB for a given application							
11.	Internet of Things	Measure the temperature and humidity by using DHT11 sensor and Arduino UNO							
12.	(IoT)	Create a smart plant watering system using IoT							
	Course Project	Students are required to create an affordable prototype as their course project, based on the knowledge and skills acquired during the course. Students have to present and submit their prototypes to demonstrate their ability to apply classroom learning practically, showcasing their creativity and technical aptitude.							

Laboratory Manual:

• *IDEA Lab Makerspace* Laboratory Manual & Record Book (LMRB) prepared by the faculty of department of Mechanical Engineering, KITSW, Revised version 4, August-2024

Text/ Reference Book(s):

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy., "Elements of Workshop Technology", Media Promoters and publishers Pvt. Ltd, India, Vol-I-2008 & Vol-II-2010
- 2. Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani, "Additive Manufacturing Technologies-3D Printing, Rapid Prototyping, and Direct Digital Manufacturing" Springer Nature, 2nd Edition 2021
- 3. R.S. Khandpur, "Printed Circuit Boards: Design, Fabrication, Assembly and Testing", New Delhi Tata Mc Graw Hill-2008

4. Sudeep Mishra, Anandarupmukherjee and Arijit Roy, "Introduction to IoT", New Delhi: University Cambridge Press, 2021

Course Learning Outcomes (COs):

After completion of this course, the students should be able to ...

(based on psychomotor skills acquired from laboratory component)

CO1: produce wooden joints and intricate articles using carpentry and CNC wood router respectively

CO2: implement procedures to prepare the mould cavity for sand casting and arc welding joints

CO3: produce innovative prototypes using laser engraving and 3D printing

CO4: design and develop systems based on PCB and IoT for given applications

Course	e Articulation Ma	AM):			U2	4AE2	07 ID	EA La	ıb Ma	kersp	ace		PSO PSO 1 2								
СО		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1								
CO1	U24AE207.1	2	2	1	1	2	1	1	2	2	-	1	1	1							
CO2	U24AE207.1	2	2	1	1	2	1	1	2	2	-	1	1	1							
CO3	U24AE207.1	2	2	1	1	2	1	1	2	2	-	1	1	1							
CO4	U24AE207.1	2	2	1	1	2	1	1	2	2	-	1	1	1							
U24AE207 2 2		1	1	2	1	1	2	2	-	1	1	1									
	3 - HIGH, 2 - MEDIUM, 1 - LOW																				

PRACTICUM-2									
Class: B.Tech. II-Semester Branch: Common to all branches									
Course Code:	U24EL209	Credits:	1						
Hours/Week (L-T-P-O-E):	0-0-0-4-4	CIE:	100%						
Total Number of Teaching Hours:	-	ESE:	-						

This course will develop students' knowledge in /on...

LO1: literature review and identifying research gaps

LO2: implementing a project independently by applying knowledge to practice

LO3: preparing well-documented report and informative PPT

LO4: effective technical presentation and creating video pitch

Practicum is an independent project carried out by the student during the course period, under the supervision of allotted course faculty. It helps to reinforce the students' theoretical knowledge and develop their ability to apply this knowledge to the solution of practical problems. Practicums also prepare them for their MINI and MAJOR PROJECTs and for independent work in their chosen field that promotes creative abilities. Besides they provide Higher Order Cognitive Abilities (HOCAs).

- (i). Practicum is a mandatory semester project work.
- (ii). Practicum is offered as a one credit course. Student has to earn 4 credits (one in each semester from I to IV semesters)
- (iii). Allotment of Practicum topics for students:
 - o **Practicum matrix:** In week (-1), the class teacher, in consultation with HoD, shall prepare the practicum matrix of the section. The practicum matrix is the allotment of group of students to the different course faculty of the section, as shown below.

Course	U24MH201	U24PY202C	U24CE203	U24CE204	U24EE205C	U24CY206
	B24XX001	B24XX011	B24XX021	B24XX031	B24XX041	B24XX051
	B24XX002	B24XX012	B24XX022	B24XX032	B24XX042	B24XX052
	B24XX003	B24XX013	B24XX023	B24XX033	B24XX043	B24XX053
Students	B24XX004	B24XX014	B24XX024	B24XX034	B24XX044	B24XX054
allotted to	B24XX005	B24XX015	B24XX025	B24XX035	B24XX045	B24XX055
different	B24XX006	B24XX016	B24XX026	B24XX036	B24XX046	B24XX056
courses	B24XX007	B24XX017	B24XX027	B24XX037	B24XX047	B24XX057
	B24XX008	B24XX018	B24XX028	B24XX038	B24XX048	B24XX058
	B24XX009	B24XX019	B24XX029	B24XX039	B24XX049	B24XX059
	B24XX010	B24XX020	B24XX030	B24XX040	B24XX050	B24XX060

- o In week (-1), the class teacher of a section shall collect 10-12 topics for practicum from each of the course teachers of that section.
- o The class teacher, in consultation with HoD shall allot the practicum topics to the students of that section in the following format.

CIRCULAR

Allotment of Practicum topics to students

Section :

C No	Roll number	Practicum topic	Practicum under	Course		
S.No.	of the student	allotted	the course	faculty		

Note:

- 1. The students should meet immediately the allotted course faculty for practicum and start working on the practicum with the guidance of course faculty.
- 2. To complete the Practicum, the student shall work in laboratories under supervision of allotted course faculty, in the allotted hours in the classwork timetable and also outside the class work hours during weekdays.
- 3. The course faculty are advised to guide the allotted students for practicum during the semester course work.

(Signature of class teacher)

- (iv). To complete the practicum, the student shall work in laboratories under supervision of allotted course faculty, in the allotted hours in the classwork timetable and outside the class work hours during weekdays.
- (v). There shall be only continuous Internal Evaluation (CIE) for practicum for a maximum of 100 marks.
- (vi). The practicum course faculty shall evaluate & submit the final marks of the allotted students in week (N+1) to the respective class teacher.
- (vii). The class teacher shall collect the final marks of practicum of the students allotted to each course teacher and submit them to the CoE.
- (viii). Course faculty shall follow his/her own rubrics for practicum evaluation. Focus shall be on knowledge, skills & qualities acquired by the student during the practicum course
 - (ix). A sample rubrics for assessment and evaluation of practicum is as follows:

Literature survey & Identification of research gaps	10 marks
Working model / process / software package / system developed	30 marks
Report writing (subjected to max of 30% plagiarism)	20 marks
Oral presentation with PPT and viva-voce	20 marks
Video pitch	20 marks
Total	100 marks

<u>Note</u>: It is mandatory for the student to appear for oral presentation and viva-voce to qualify for course evaluation of Practicum.

- (a) **Practicum Topic**: Each student shall be allotted a topic for practicum by the course faculty member attached to him/her. Interested students can work on their own title for practicum, but with due approval from course faculty.
- (b) **Working Model**: Each student is required to develop a prototype / process / system/simulation model on the given practicum topic and demonstrate/present, during the allotted time, before the course teacher.
- (c) **Report:** Each student is required to submit a well-documented report on the allotted practicum topic as per the format specified by the course faculty. The student shall include answers to the following questions in the report and ppt presentation.
 - What was the objective of the practicum assigned?
 - What are the main responsibilities and tasks for practicum?
 - o What knowledge and skills from the coursework are applied in the practicum?
 - What new knowledge and skills are acquired during the practicum?
 - o In what ways, can the practicum be helpful for the professional career?
 - o What gaps are identified in your practicum work?
 - What improvements or changes you suggest for addressing the identified gaps for future work?
- (d) **Anti-Plagiarism Check:** The practicum report should clear plagiarism check as per the Anti-Plagiarism policy of the institute
- (e) **Presentation:** Each student should prepare PPT with informative slides and make an effective oral presentation before the course teacher as per the schedule notified by the department
- (f) **Video Pitch:** Each student should create a pitch video, which is a video presentation on his / her Practicum. Video pitch should be no longer than 5 minutes by keeping the pitch concise and to the point, which shall also include evidence like videos & pics at the time of implementing the practicum and also key points about his / her business idea / plan (*if any*) and social impact
- (g) The student has to register for the Practicum as a supplementary examination in the following cases:
 - i) he/she is absent for oral presentation and viva-voce
 - ii) he/she fails to submit the report in prescribed format
 - iii) he/she fails to fulfill the requirements of Practicum evaluation as per specified guidelines

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

- CO1: synthesize literature survey, identify research gaps and define objective & scope of practicum problem
- CO2: apply knowledge to design & conduct experiments, utilize modern tools for solution of practicum problem and develop working model/ process/ system
- CO3: demonstrate the generic competencies in making a well-documented report portraying knowledge, skills, qualities acquired through practicum
- **CO4**: create a video pitch on practicum and make an effective oral presentation using PPTs

Course	Articulation N	/atrix (U24	EL209	PRA	CTIC	UM-2									
СО		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2					
CO1	U24EL2098.1	2	2	2	2	2	2	2	2	2	2	2	2	2					
CO2	U24EL209.2	2	2	2	2	2	2	2	2	2	2	2	2	2					
CO3	U24EL209.3	2	2	2	2	2	2	2	2	2	2	2	2	2					
CO4	U24EL209.4	2	2	2	2	2	2	2	2	2	2	2	2	2					
U	U24EL209 2 2			2	2	2	2	2	2	2	2	2	2	2					
	3 - HIGH, 2 - MEDIUM, 1 - LOW																		

SOCIAL EMPOWERMENT ACTIVITY / SELF ACCOMPLISHMENT ACTIVITY -2 (SEA-2/SAA-2)

Class: B.Tech. II -Semesters	Branch: Common to all branches						
Course Code:	U24VA210	Credits:	1				
Hours/Week (L-T-P-O-E):	0-0-0-2-2	CIE:	100%				
Total Number of Teaching Hours:	-	ESE:	-				

Course Learning Objectives (LOs):

This course will develop students' knowledge in /on...

- **LO1: holistic development** through activity-based learning to gain real-life experience which effectively help individuals deal appropriately with problems/challenges
- **LO2: positive mindset** by actively adopting optimism, acceptance, resilience, gratitude, mindfulness, and integrity and handling rejection in life
- LO3: skills for effective fieldwork practice, which include ethics, observation, communication, interviewing, problem solving, time management, organisation and documentation
- **LO4:** making a well-documented report and an effective oral presentation through PPTs portraying knowledge, skills, qualities acquired and social impact of the activity

Activity Based Liberal Learning about Life, Literature and Culture (ABLL@LLC) is introduced for building **generic competencies** in students. ABLL is aimed at all dimensional holistic growth of the learner. The holistic development includes the **physical**, **emotional**, **cognitive**, **spiritual and social aspects**. This is an area which opens the decision-making process, helps the student to develop creativity, an analytical mind, and builds resilience, confidence, hope, well-being and success. This will help student face the world with a greater degree of maturity, stoic and become a wholesome person in the society.

It is more than just learning from books to lead a successful life. These activity-based liberal learning courses, which help students to expand their social roles later in life, are offered under two sequels namely **SEA** (Social Empowerment Activities) and **SAA** (Self Accomplishment Activities)

These SEA/SAA courses also focus on building positive mindset: adopting optimism, acceptance, resilience, gratitude, mindfulness, and integrity in your life will help student develop and maintain a positive mindset.

- (a) Each SEA/SAA activity is treated as one credit course
- (b) Student must select one activity per semester, through first 04 semesters, from the courses listed under SEA/ SAA, before commencement of the semester.
- (c) Students are required to earn minimum 04 credits under SEA/SAA, by completing minimum 02 credits through SEA and minimum 02 credits through SAA
- (d) To complete these activities student shall work outside the class work hours, during weekends, holidays, semester breaks, etc.,
- (e) If a student is not able to attend/ fulfil performance requirements, he/she shall be dropped from the course and shall have to enrol in the forthcoming semesters.

Monitoring SEA/SAA:

(a) **Nodal units:** The Student Activity Centre (SAC) and Centre for Innovation Incubation Research and Entrepreneurship (C-i²RE) shall act as nodal units for activities listed under SEA/SAA.

- (b) During the semester period, the student has to **acquire requisite knowledge**, **conduct fieldwork**, acquire skills and propose unique solutions to the real-life problems
- (c) Knowledge Acquisition & Skilling:
 - i. Students have to identify goals, acquire and accumulate knowledge on the chosen SEA/SAA activity
- ii. For the activities related to social awareness/issues/challenges that affect society, use the knowledge base, apply relevant skills to analyse the issue and propose unique possible solutions to the social issues/challenges. Practice to acquire necessary skills to seek new opportunities in their personal and professional life.
- iii. For the activities related to physical fitness, music, dance, fine arts, etc., guided practice sessions under supervision of expert/guru are to be planned and executed to acquire the benchmark skills to be demonstrated.
- (d) **Fieldwork:** Fieldwork is an essential component of learning for gaining real-life experiences. In addition to knowledge acquisition & skilling, student has to take up fieldwork on the chosen activity, as part of SEA/SAA course.
 - i. This student-driven Fieldwork allow students to interact with the 'real world'. It is an autonomous learning (self-learning) situation that students are more actively involved during the activity and develop a deeper understanding and develop a more positive attitude.
 - ii. Fieldwork consists of three phases: preparation, the actual activity and feedback
- iii. As part of fieldwork, student has to interact with at least two eminent personalities/achievers/renowned persons/inspiring and great personalities related to the activity chosen.
- iv. Fieldwork will benefit students for any careers where they need to work with communities of people or which involves analysis of complex processes, especially social and cultural.
- v. Certain skills are required for effective fieldwork, which include observation, communication, interviewing, problem solving, documentation, and more
- vi. Other skills important for fieldwork practice include the ability to act in a crisis, to plan, set priorities, mobilize resources, and implement the plan effectively. These skills used in an integrated manner help students solve their problems and to develop one's own leadership style based on the need and culture of the place.
- vii. Eminent personalities/achievers/renowned persons/inspiring and great personalities

Eminent personalities/ Achievers / Renowned personalities:

- (a). In case of socially relevant problems/ activities of SEA/SAA: Eminent personalities/ achievers include district administrative officers, Eminent Social workers / NGOs, other inspiring and great personalities
- (b). In case of Sports / Games and Cultural activities of SEA/SAA: Eminent coaches/ trainers/gurus, achievers who represented/won state level/national level/international level competitions, other inspiring and great personalities.

- viii. **For appointment to interact eminent personalities**: Student is expected to follow email etiquette rules and other appropriate polite communication etiquettes for getting appointment and time for interaction
 - ix. On fieldwork, student is expected to demonstrate solid time management, organizational and note taking skills during fieldwork
 - x. **Ethics of fieldwork**: Fieldwork is an educational process with commitment to positive values. All fieldwork should be planned and conducted in a way that is ethical, responsible and safe, for people, students, visited communities, if any, and all other stakeholders. Student is expected to maintain integrity and honesty. Avoid bias and deception. Protect the rights and well-being of people involved in fieldwork. The privacy, confidentiality and respect for the eminent people interacted should be maintained and their time, inputs & guidance are to be acknowledged
- xi. Student is expected to take care of health and Safety practices for fieldwork and travel
- xii. Student should remember that contrary to a *field trip or company visit*, **the emphasis in fieldwork is on acquiring skills**, and not on casually presenting theory and assessing.
- xiii. For the fieldwork, student shall go with a scientifically designed questionnaire and record the responses during interaction. These response sheets, along with geotagged pic of fieldwork (at the time of interaction & practice sessions, if any) shall be appended as annexures in the report to be submitted for course evaluation.
- xiv. **Feedback:** The learnings the student made out of interaction with eminent achievers shall be presented in the report as one of the chapters.
 - During feedback, the central focus is on the elaboration of the students' experience during fieldwork. Therefore, the student should create an end product, such as a demonstration/presentation and report in which they demonstrate a link between their experiences during fieldwork and the underlying theoretical concepts and ideas.
- (e) **Demonstration / Presentation and Report**: Student after presentation/demonstration of his/her achievements/work, shall get a certificate from the concerned nodal unit and submit a report, in the prescribed format, to the faculty counsellor for award of grade.
- (f) Flow process for completion of SEA/SAA course:
- vi. *Faculty counsellor approval*: In week (-1), in consultation with faculty counsellor, every student shall, identifies minimum of 4 activities listed under SEA/SAA activities, lists their priority and fills the same in ONLINE REGISTRATION FORM FOR SEA/SAA (received in their domain mail id) to Dean, Student Affairs. Dean, Student Affairs shall release the section wise allotment of SEA/SAA courses to students along with the details of supervising faculty of nodal centre. The allotment details shall be shared to the SEA/SAA coordinator and the student through domain mail id of the student
- vii. *Identification of goals and preparation of action plan:* In week (1), the respective faculty coordinator(s) of nodal centers shall address the students allotted to them to educate them on fixing goals, plan of action for completion and evaluation. In consultation with nodal centre, based on the workflow of the allotted activity, every

- student shall identify the goals (of activity) & eminent personalities (to be visited during the field trip) and prepare action plan (oriented workflow) for attaining the identified goals.
- viii. *Field work:* Under the guidance of nodal centre, student shall complete the field work, based on the action plan, with the progress continuously monitored by the faculty counsellor and the nodal centre.
 - ix. *Demonstration/ Presentation:* After completion of field work, student shall demonstrate/present his achievements (knowledge/skills gained during the activity) at the nodal centre in the presence of external experts/senior practitioners of the activity. After successful demonstration/presentation, the nodal centre shall provide a certificate of completion indicating that the student has completed the activity in the stipulated time.
 - x. *Report writing:* After successful demonstration/presentation, student shall write a 2–3-page report and submit the same to the faculty counsellor. The report shall emphasize knowledge, skills and qualities acquired through the SEA/SAA activities. It shall also include the influence of these activities on enhancing confidence, positive change in life, decision making, transforming choices into desired actions/outcomes.
- (g) Assessment & Evaluation: There shall be only Continuous Internal Evaluation (CIE) for SEA/SAA. The SEA/SAA activities shall be evaluated at the end of the semester through respective evaluation processes, which shall include field work, presentation/demonstration, submission of reports on the gathered data/information/surveys, the details of which have been shown in below table. The department level SEA/SAA coordinator shall collect marks from the nodal centers and faculty counsellors, consolidate them, and submit the final grades to the examination branch, within one week of the last day of instruction. Evaluation of SEA/SAA activities shall be completed as and when students are ready, but not later than week (N+1).

The CIE for SEA/SAA is as follows:

Assessment	Maximum marks	Marks to be awarded by
Goal setting, Planning &	20	Nodal centre
Knowledge Acquisition		1 10 61611 551161 5
Field work	40	Nodal centre
Demonstration/Presentation	20	Nodal centre
Report submission	20	Faculty counsellor
Total	100	-

Note:

(a) <u>Presentation/ Demonstration:</u> It is mandatory for the student to appear for demonstration and (or) oral presentation oral presentation to qualify for course evaluation. In case of presentation, student should prepare PPT with informative slides including the geo tagged photos of his/her field trips/interactions as per the schedule notified by the nodal centre. In case of demonstration, student must take timeslot from the nodal centre and demonstrate the skills learnt/improved during the allotted timeslot.

- The necessary arrangements for demonstration shall be looked after the student in consultation with the coordinator with due permission from Head of the department.
- (b) **Report:** Each student is required to submit a well-documented report on the chosen SEA/SAA topic as per the format specified by *department level SEA/SAA coordinator*.
- (c) <u>Anti-Plagiarism Check:</u> The SEA/SAA report should clear plagiarism check as per the Anti-Plagiarism policy of the institute.
- (d) **Requirements for passing the course:** A student is deemed to have passed SEA/SAA if he/she
 - a. successfully demonstrates/presents the skills attained at the end of course as per the schedule notified by the nodal centre, **and**
 - b. scores a minimum of 40 marks in the CIE of the course
- (e) <u>Supplementary examination</u>: If a student fails in SEA/SAA activity of a particular semester, he must complete the same by enrolling it in the next higher semesters.

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

- **CO1**: integrate the five dimensions of physical, emotional, cognitive, spiritual and social aspects in life for holistic development and demonstrate social sensitivity
- CO2: interact effectively through written, oral and nonverbal communication with external world in a professional, sensitive and culturally relevant manner
- CO3: analyze the issues related to social empowerment / self-accomplishment, demonstrate problem-solving skills, articulate solutions and demonstrate social sensitivity
- CO4: demonstrate the generic competencies in making a well-documented report and an effective oral presentation with PPTs portraying knowledge, skills, qualities acquired through fieldwork/practice sessions and social impact of the course learning

Text / Reference book(s):

For knowledge acquisition, students shall refer to textbooks and web resources relevant to the course selected. Plan for fieldwork/practice sessions in coordination with SEA/SAA coordinator

Course Articulation Matrix (CAM): U24VA210- SEA-2/ SAA-2														
	СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24VA210.1	-	-	-	-	-	2	2	2	2	2	2	1	1
CO2	U24VA210.2	-	-	-	-	-	2	2	2	2	2	2	1	1
CO3	U24VA210.3	-	-	-	-	-	2	2	2	2	2	2	1	1
CO4	U24VA210.4	-	-	1	-	-	2	2	2	2	2	2	1	1
U24VA210				-	-	-	2	2	2	2	2	2	1	1
				3 – H	IGH. 2	- ME	DIUM.	1 - LOW		•	•	•		

Course Code: U24VA XYY(SE/SA)ZZZ X represents semester; YY represents SEA/SAA course serial number in that semester; SE- represents SEA activity or SA – represents SAA activity; ZZZ represents activity code from SEA/SAA baskets

Ex: If A student selects a SEA/SAA course as	Ex: If A student selects a SEA/SAA course as
below:	below:
Semester: 1	Semester: 4
SEA/SAA course serial number: 09	SEA/SAA course serial number: 10
SEA/SAA category: SEA	SEA/SAA category: SAA
course number: 302	course number: 206
The course code will be U24VA109SE302	The course code will be U24VA410SA206

EXPERT TALK SERIES-2											
Class: B.Tech. II -Semester Branch: Common to all branches											
Course Code:	U24AE211	Credits:	1								
Hours/Week (L-T-P-O-E):	0-0-0-1-1	CIE:	100%								
Total Number of Teaching Hours:	-	ESE:	-								

This course will develop students' knowledge in /on...

LO1: 21st century skills needed for industry, current industry trends, challenges and innovations

LO2: latest technology in practice and applying knowledge to solve real-world problems

LO3: smart work, soft skills, professional etiquette, networking abilities

LO4: making a well-documented report portraying the knowledge, skills, qualities acquired and the impact of the learning

In the 21st century, for successful career, degree alone won't suffice. Competencies are much more important.

- (a) You need to be aware of the real-world problems, industry working style, need to be confident and smart and you also need to know the tricks of the trade.
- (b) Learning from industry experts with real-world examples, is important to enhance your educational experience.
- (c) Enhanced graduate employability benefits all stakeholders. To effectively enhance employability and the immediacy of adding value to company/project, it is important that you are aware of what you are learning and its use in the workplace. The cognitive abilities viz., remember, understand, recall, and application of knowledge and other skills acquired in higher education can be maximised if you are clear on the purpose of your developed competencies and how to apply them in a range of complex situations.
- (d)Graduate employability could be enhanced through fostering lifelong learning, the development of a range of employability-related competencies and increased confidence and capacity in "reflecting on and articulating these capabilities and attributes in a range of recruitment situations".

But how would you know all this without venturing into the industry?

- (e) The answer is Industry **Expert Talk Series (ETS)**. Through ETS, we invite industry experts in different fields to deliver talks and interact with students.
- (f) Through Industry expert talks students get to know so much more that textbooks don't explain.
- (g)Students have the opportunity to learn from professionals who have achieved success in their respective fields. These speakers often share their personal experiences, case studies, and anecdotes, providing students with real-world examples and perspectives that go beyond theoretical concepts.

- (h)Our competency-focussed curriculum URR24 is designed to contribute greatly to the nurturing and development of each of these facets among students through ETS courses
- (i) ETS helps students gain improved industry engagement for an easier transition into the workplace, broader career progression opportunities and personal development.
- (j) In URR24 curriculum, Expert talk series (ETS) is offered as a course under **ability enhancement category of courses**.
- (k) Through ETS sessions, students get the chance to interact with industry regularly which helps them focus on the needs and requirements of current industry. This will not only enthuse the students with new ideas but also motivate them to understand what kind of 21st century skills are needed in industry and how they need to groom themselves.
- (l) Through ETS sessions, another benefit is that students learn the importance of soft skills like communication, presentation, email etiquettes, corporate grooming and dressing styles. Conversing with successful people is the biggest motivation and students gain in more ways than one through ETS sessions.
- (m) ETS enhances your learning in many ways for global opportunities for your career.
- (n) All in all, learning from industry experts, is a wonderful opportunity for student to getting acquainted with professional etiquette, acquiring professional knowledge, and getting to know the internal workings of an organization.
- (o) Salient features of ETS are hereunder:
 - (i) ETS is offered from I semester to VI semester.
 - (ii) ETS, in any given semester, is treated as one credit course
 - (iii) Students are required to earn six credits (from I to VI semester)
 - (iv) Head, Centre for i²RE shall be the institute level ETS coordinator
 - (v) Under this course, a minimum of 10 expert talks shall be organized in **online/offline mode** by the parent department / Centre for i²RE.
 - (vi) Each expert talk shall be for a minimum duration of 45 minutes (*but not exceeding 90 minutes*) followed by **online quiz/test** for 10 marks (10 MCQs/FiBs; *duration:* 10-15 *mins*), on the contents covered in the expert talk.
 - (vii) **The Head C-i**²**RE** shall share the marks obtained by the students in each of the quizzes / tests to the respective **department ETS coordinators**.
 - (viii) Each student shall attend a minimum of 6 expert talks and attempt the corresponding quizzes/ tests conducted at the end of the talks.
 - (ix) **Report on ETS:** At the end of semester, the student shall submit a well-documented report on the acquired knowledge and skills, in the prescribed format, to the department ETS coordinator.
 - (x) **Evaluation:** There shall be only continuous Internal Evaluation (CIE) for ETS for a maximum of 100 marks

- (xi) The department ETS coordinator shall, in coordination with institute level ETS coordinator, submit the final scores to the CoE in week (N+1).
- (p) The CIE for ETS is as follows:

Rubrics for evaluation of ETS

	100 marks
Report in prescribed format (max 30% plagiarism)	20 marks
Attendance (out of 10 quizzes)	20 marks
for 10 marks)	60 marks
Quiz score (sum of best 6 quiz scores out of 10 quizzes. Each quiz evaluated	1

ii. **Attendance**: Maximum of 20 marks shall be awarded based on the attendance maintained by the student over a maximum of 10 lectures.

$$Marks for attendance = \frac{Number of expert talks attended fully}{10} * 20$$

iii. Supplementary Exam:

- (e) Student has to register for ETS supplementary examination if he/she scores less than 40 marks in CIE
- (f) The ETS supplementary examination shall be conducted by the parent department, in physical mode, for 100 marks (MCQs/FiBs; duration: 2Hrs) on the content covered in ETS lectures.
- (g) Department ETS coordinator shall, in coordination with the institute level ETS coordinator, conduct the supplementary exam, and submit scores to the CoE
- (h) Exam material/resources for supplementary: Recorded videos of ETS arranged for that semester, which shall be made available on ETS webpage of institute website

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

- **CO1:** identify real-world problems, different career paths, industry requirements, emerging job roles, business practices and exploit new opportunities by staying upto-date with industry knowledge, trends and technology
- CO2: identify what 21st century employability-related skills and professional etiquette are must in a range of recruitment situations, what skills are absent in him/her, and demonstrate skill improvement
- **CO3:** interact with experts, exhibit confidence, demonstrate improved communication and networking abilities potentially leading to mentorship opportunities, internships, or even future job prospects
- **CO4:** demonstrate the generic competencies in making a well-documented report portraying knowledge, skills, qualities acquired through ETS sessions and impact of the expert talks

Course Articulation Matrix (CAM):					U24AE211 EXPERT TALK SERIES-2									
СО		PO	РО	PO	PO	РО	PO	PO	PO	РО	PO	PO	PSO	PSO
		1	2	3	4	5	6	7	8	9	10	11	1	2
CO1	U24AE211.1	1	1	1	1	1	1	2	1	2	1	2	1	1
CO2	U24AE211.2	1	1	1	1	1	1	2	1	2	1	2	1	1
CO3	U24AE211.3	1	1	1	1	1	1	2	1	2	1	2	1	1
CO4	U24AE211.4	1	1	1	1	1	1	2	1	2	1	2	1	1
U24AE211 1 1					1	1	1	2	1	2	1	2	1	1
				3 - H	IGH, 2	- ME	DIUM, 1	1 - LOW						

FUNDAMENTALS OF SURVEYING										
Class: B.Tech. II-Semester(Exit) Branch: Civil Engineering										
Course Code:	U24CE212X	Credits:	3							
Hours/Week(L-T-P-O-E):	2-0-2-0-4	CIE:	60(%)							
Total Number of Teaching Hours:	32 Hrs	ESE:	40(%)							

This course will develop students' knowledge in/on...

- LO1: basic principles of surveying and linear measurements
- LO2: compass and theodlite surveying
- LO3: concepts of levelingLO4: total station surveying

THEORYC OMPONENT

UNIT-I 4Hrs

Chain surveying: Principles of surveying, Types of Chain and Tape, Error due to incorrect chain, Errors in chaining, Tape corrections, Chaining and Ranging on level ground and Sloping ground.

UNIT-II 4Hrs

Compass and Theodolite Surveying: Types of compass, bearings, Magnetic declination, Local Attraction, Temporary and permanent adjustments of theodolite, Measurement of angles, Fundamental lines and relations, Traverse methods and computations.

UNIT-III 4Hrs

Leveling: Instruments for leveling, Principle and classification of leveling, Readings and booking of levels, field work in leveling, longitudinal section and cross section, plotting the profile, Height (level)computations

UNIT-IV 4Hrs

Total station Surveying: Introduction and features of total station, Setting up and orienting, Capabilities and advantages of total station, Uses, applications.

LABORATORY COMPONENT

List of Experiments

- 1. Chain surveying: use of optical quire or cross staff, check line, timeline
- 2. Horizontal angle measurement by repetition and re-iteration methods
- 3. Measuring the distance between two inaccessible points using theodolite
- 4. Theodolite traversing-closed traverse
- 5. Fly leveling using auto level
- 6. Profile leveling using auto level
- 7. Determine area of given a terrain using total station.
- 8. Determine the elevation of the remote object using total station.

Text book(s):

- 1. B. C. Punmia, Ashok Kumar Jain, and Arun Kumar Jain, *Surveying (Volumes I, II, and III)*, 18th ed., New Delhi, Laxmi Publications, 2020.
- 2. S.K.Duggal, *Surveying(Volume I and II)*, 4th ed., McGraw Hill Education (India)Pvt.Ltd., , 2022.

Reference Book(S):

- 1. Dr.K.R.Arora, *Surveying (Volume I and II)*, 16th ed., Delhi, Standard Book House, 2022.
- 2. T.P. Kanetker and S.V. Kulkarni, *Surveying and Levelling (Volume I and II)*, 26th ed., Pune, Vidyarthi Griha Prakashan, 2017.
- 3. R.Subramanian, *Surveying and Leveling*, 2nd., New Delhi, Oxford University Press, 2014.
- 4. S.K.Roy, *Fundamentals of Surveying*, 2nd ed., New Delhi, PHI Learning Private Limited, 2010.

Web and Video link(s):

- 1. https://nptel.ac.in/courses/105107122NPTEL Video Lecture on Introduction to Surveying by Prof.J. K.Ghosh, Surveying, IIT Roorkee.
- 2. https://archive.nptel.ac.in/courses/105/103/105103176/ NPTEL Video Lecture on Higher Surveying by Dr. Ajay Dashora, Civil Engineering, IIT Guwahati.
- 3. https://archive.nptel.ac.in/courses/105/107/105107157/ NPTEL Video Lecture on GPS Surveying, Prof. J. K. Ghosh, IIT Roorkee.
- 4. https://nptel.ac.in/courses/105104100NPTEL Video Lecture on Modern Surveying Techniques by Dr. Onkar Dikshit, Civil Engineering, IIT Kanpur.

Laboratory Manual and Record Book (for laboratory component):

1. Surveying fieldwork laboratory manual and record book, prepared by Faculty, Department of Civil Engineering.

Course Learning Outcomes (COs)

After completion of this course, the students should be able to,

(based on cognitive skills acquired from theory component)

CO1: measure linear distances using chain and tape.

CO2: build a traverse using theodolite.

CO3: interpret elevations using leveling instrument

CO4: determine area and elevations using total station.

(based on psychomotor skills acquired from laboratory component)

CO5:measuredistances and angle using tape and the odolite

CO6: determine distance between inaccessible points using theodolite

CO7:estimate elevations using leveling instrument

CO8: estimate area and elevations using total station.

Course	e Articulation M	latrix (CAM):	U240	U24CE212X Fundamentals of Surveying										
CO		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	
CO1	U24CE212X.1	3	2	-	-	-	-	1	1	1	1	1	2	1	
CO2	U24CE212X.2	3	2	-	-	-	-	1	1	1	1	1	2	1	
CO3	U24CE212X.3	3	2	-	-	-	-	1	1	1	1	1	2	1	
CO4	U24CE212X.4	3	2	-	-	-	-	1	1	1	1	1	2	1	
CO5	U24CE212X.5	3	2	-	-	-	-	1	1	1	1	1	2	1	
CO6	U24CE212X.6	3	2	-	-	-	-	1	1	1	1	1	2	1	
CO7	U24CE212X.7	3	2	-	-	-	-	1	1	1	1	1	2	1	
CO8	U24CE212X.8	3	2	-	-	-	-	1	1	1	1	1	2	1	
U2	4CE212X	3	2	-	-	-	-	1	1	1	1	1	2	1	
			3	- HIGH	I, 2 – N	1EDIU	M, 1 -	LOW							

CIVIL ENGINEERING MATERIALS									
Class: B.Tech. II-Semester (Exit)		Branch: CE							
Course Code:	U24CE213X	Credits:	3						
Hours/Week(L-T-P-O-E):	2-0-2-0-4	CIE:	60(%)						
Total Number of Teaching Hours:	32 Hrs	ESE:	40(%)						

This course will develop students' knowledge in/on...

LO1: Civil engineering materials and their classification.

LO2: Manufacturing, using and testing of bricks and tiles. LO3:

Types of aggregates and their uses in construction.

LO4: Concrete and concrete making materials & other construction materials.

THEORY COMPONENT UNIT-I 4Hrs

Introduction: Introduction to building materials, classification of materials, properties of good building materials, Indian Standard codes.

Stones: Classification of rocks, Characteristics of good building stone, Quarrying, Quarry sap, Common varieties of stones-granite, marble, Kadapaslab, Shahabad stones, Dressing of stones-purpose, tools used.

UNIT-II 4Hrs

Bricks and Tiles: Method of manufacture of bricks - continuous kiln process, ISI specification for bricks IS-1077-1971, Characteristics of good bricks, Testing of bricks as per IS-3495-1966 - tests on water absorption and compressive strength of bricks, Refractory bricks, AAC, CLC and Fly ash bricks & their uses, Tiles-Types of tiles roofing tiles, floor tiles, Ceramic tiles, Vitrified tiles, Morbonite, Characteristics of good tiles, Porcelain-glazed

Tiles (uses only), Stone ware pipes and their uses.

UNIT-III 4Hrs

Aggregates: Fine and coarse aggregates, Utility in concrete, classification, effect of geometry & texture, strength, mechanical properties, moisture content, water absorption, bulking of sand, deleterious substances, sieve analysis, Fineness modulus, various grading and grading requirements, sampling & testing as per Indian Standards.

Steel: Structural steel and its properties, various tests on steel as per Indian standard code.

UNIT-IV 4Hrs

Cement and concrete: Chemical composition, hydration, heat of hydration, various types of

Cement and concrete: Chemical composition, hydration, heat of hydration, various types of cement, testing of cement as per Indian standard, Admixtures, types, uses, concrete making materials, mixing, transportation, placing, workability, compaction, segregation and bleeding, precautions, Hardened concrete properties, compressive strength, split tensile strength.

Other Materials: Surface protective materials, paints, plastics, asbestos, timber, glass.

LABORATORY COMPONENT

List of Experiments

- 1. Determination of Compressive Strength of Stone Blocks
- 2. Determination of Compressive Strength of Burnt Clay Bricks
- 3. Determination of Water Absorption and Efflorescence of Burnt Clay Bricks
- 4. Determination of Fineness Modulus of Fine and Coarse Aggregates
- 5. Determination of Specific Gravity, Bulk Density, Voids Ratio, and Porosity of Fine Aggregate
- 6. Determination of Specific Gravity, Bulk Density, Voids Ratio, and Porosity of Coarse Aggregate
- 7. Determination of Bulking of Fine Aggregate
- 8. Determination of Workability of Fresh Concrete
- 9. Determination of Modulus of Elasticity of Steel by Conducting Tension Test
- 10. Determination of the Brinell's Hardness Numbers for Steel, Brass, and Aluminium
- 11. Bend and Re-bend Test on Steel Specimen Used in RCC
- 12. Impact Test on Metal Specimens Using Charpy and Izod Test
- 13. Determination of Compressive Strength and Split Tensile Strength of Concrete

Text book(s):

- 1. S.K.Duggal, "Buildingmaterials", New Ageinter national Pvt., Ltd., New Delhi
- 2. N. L. Arora and B. L. Gupta, "Building construction", Satya prakshan publications, New Delhi.
- 3. C.Rangwala, K.S.Rangwala and P.S.Rangwala, "Engineeringmaterials", Charotar Publishers
- 4. M. L. Gambhir, "Concrete Technology", 5th ed., New Delhi, Tata Mc Graw-Hill, 2013.

Reference Book(S):

- 1. M.S. Shetty, "Concrete Technology (Theory and Practice)", 7th ed., New Delhi, S.Chand Company, 2010.
- 2. A. M. Neville, "Properties of Concrete", 5th ed., New Delhi, Mc Graw Hill Publications, 2012.
- 3. B.C. Punmia, "Building construction" 19th Ed., New Delhi, Laxmi Publications Pvt.,Ltd., 2005
- 4. "Civil Engineering Materials Laboratory Manual", prepared by faculty of Department of Civil Engineering.

Web and Video link(s):

- 1. https://youtu.be/ULt4aEst4mM?si=hv1]n-6GhDHjaNUeNPTEL Video Lecture on Introduction to Construction Materials by Prof. Manu Santhanam, IIT Madras...
- 2. https://youtu.be/SLPPFykORjA?si=Duu5wHRsfnNMMuwr NPTEL Video Lecture on Stone Bricks and Mortar by Prof. Manu Santhanam, IIT Madras...
- 3. https://youtu.be/4tgkRcLvQFc?si=4kOuaIIs5P0fslJqNPTELVideoLectureonCementandConcrete by Prof. Manu Santhanam, IIT Madras.
- 4. https://youtu.be/kBj]KrEMFj0?si=IJFuFgne0-ly4lkH NPTEL Video Lecture on Metals by Prof. Manu Santhanam, IIT Madras.
- 5. <u>https://youtu.be/CHs83nfkTy8?si=sCs9d-RZmJHopb9g_NPTEL_Video_Lecture_on_Cement_Properties_and_tests_by_Prof. B.Bhattacharjee, IIT_Delhi.</u>
- 6. https://youtu.be/9PSuiuGic3w?si=A_DOI8MOE6XiDZ41NPTEL Video Lecture on Aggregate shapes, sizes and tests by Prof. B.Bhattacharjee, IIT Delhi.
- 7. https://youtu.be/8Fk1H-sQhoo?si=q3i7mbv5wWlay-71 NPTEL Video Lecture on Work ability of Concrete by Prof. B.Bhattacharjee, IIT Delhi.
- 8. https://youtu.be/DGhQYSlzTUw?si=_rvYP3RD6G5GB6t8NPTEL Video Lecture on Factors affecting strength of concrete by Prof. B.Bhattacharjee, IIT Delhi.

9. https://youtu.be/CaDyeLe6]80?si=-k2tUrQYOvdLW9-1NPTEL Video Lecture on Strength of Concrete: Factors Affecting Test Results by Prof. B. Bhattacharjee, IIT Delhi

Laboratory Manual (for laboratory component):

1. "Civil Engineering Materials Laboratory Manual", prepared by faculty of Department of Civil Engineering.

Course Learning Outcomes (COs)

After completion of this course, the students should be able to:

(Based on cognitive skills acquired from the theory component)

CO1: Classify and demonstrate the occurrence and existence of stone.

CO2: Portray the manufacturing of lime, cement, and tiles.

CO3: Classify aggregates and steel used in construction.

CO4: Summarize constituent materials, properties, and tests on fresh and hardened concrete.

(Based on psychomotor skills acquired from the laboratory component)

CO5: Correlate theory with the testing of engineering material.

CO6: Establish the mechanical properties of civil engineering materials.

CO7: Appraise the behavior of civil engineering materials when tested under various loads.

CO8: Realize the specifications recommended by various codes to civil engineering materials.

Co	Course Articulation Matrix (CAM): U24CI213X:Civil Engineering Materials													
CO		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
		1	2	3	4	5	6	7	8	9	10	11	1	2
CO1	U24CE213X.1	1	-	-	-	•	2	1	-	1	-	2	1	1
CO2	U24CE213X.2	1	-	-	-	-	2	1	-	1	-	2	1	1
CO3	U24CE213X.3	1	-	-	1	-	2	1	-	1	-	2	1	1
CO4	U24CE213X.4	1	1	-	1	1	2	1	-	1	-	2	1	1
CO5	U24CE213X.5	3	2	2	3	2	1	3	3	2	-	2	2	2
CO6	U24CE213X.6	3	2	2	3	2	1	3	3	2	-	2	2	2
CO7	U24CE213X.7	3	2	2	3	2	1	3	3	2	-	2	2	2
CO8	U24CE213X.8	3	2	2	3	2	1	3	3	2	-	2	2	2
U2	24CI213X	2	2	2	2.33	2	1.5	2	3	1.5	-	2	1.5	1.5
	·		3	3 – HIGI	H, 2 – N	/IEDIU	JM, 1 -	LOW	7					

CONSTRUCTION PRACTICES									
Class: B.Tech. II-Semester (Exit) Branch: Civil Engineering									
Course Code:	U24CE214X	Credits:	3						
Hours/Week(L-T-P-O-E):	2-0-2-0-4	CIE:	60(%)						
Total Number of Teaching Hours:	32 Hrs	ESE:	40(%)						

This course will develop students' knowledge in/on...

LO1: construction of different building components as per building specifications

LO2: substructure and superstructure of building.

LO3: erection and removal of different temporary structures

LO4: protection of buildings and essential services

THEORY COMPONENT UNIT-I 4Hrs

Components of Building and Building Specifications: Basic requirements of building, building line, set back line, covered area, plinth area, floor area, carpet area, building height, room height, habitable rooms, bathroom, water closet, Balcony. Building components and their functions – substructure and super structure; Orientation of Building; Construction sequence of residential building.

Site Preparation and Setting Out of works: Site layout, site clearing, enclosing the site, water and electrical supply for construction at site, setting out of buildings, methods to determine depth of excavation.

UNIT-II 4Hrs

Construction of substructure and superstructure: Types and functions of foundations, procedure for excavation for foundation. Brick masonry – Bonds in brick work; Stone masonry – types of stone masonry.

Flooring: Functions of a floor, Details of construction of sub base and base, selection of floor; planning for the layout of tiled floors. General principles of laying concrete floor. Types of flooring

UNIT-III 4Hrs

Formwork and Scaffolding: Form work, requirements of form work, types of form works for concreting, Scaffolding-components of scaffolding, requirements of scaffolding.

Framed Structures: Principles of framed structures; components of framed structuresbeams, columns, and slab. Advantages of framed structures.

UNIT-IV 4Hrs

Finishing and Protection of Buildings: Plastering, plastering techniques, Pointing-methods of pointing, types of pointing, Painting, Varnishing; Anti-termite treatment, Damp prevention, Fire protection-general safety requirements against fire.

Essential and Special services in buildings: Plumbing services- principles of plumbing services in buildings, water supply fittings and fixtures, sanitary fittings and appliances, layout of building drainage.

LABORATORY COMPONENT

List of Experiments

- 1. Layout Plan and Marking of a Building
- 2. Setting Out of a Building Foundation Marking as per the Given Plan
- 3. Construction of a Wall (Height of 50 cm and Wall Thickness of 1" and 1.5") Brick Walls in English Bond without Cement Mortar Corner Portion, Length of Side Walls 60 cm
- 4. Construction of 1" and 1.5" Thick Brick Pillar Using Cement Mortar or Brick Piers in English Bond and Flemish Bond
- 5. Construction of Base Coat and Laying of Tile Flooring of One Square Meter
- 6. Plastering and Finishing of Wall
- 7. Pipe Joints and Plumbing Fixtures like Tap, T-Joint, Bend, Elbow
- 8. Demonstration on Formwork and Scaffolding Detailing, Erection, and Removal for Different Structural Members

Textbook(s):

- 1. P. Purushothama Raj, *Building Construction Materials and Techniques*, 2nd ed., Noida, Pearson India Education Services Pvt. Ltd., 2018.
- 2. P. C. Varghese, *Building Construction*, 2nd ed., New Delhi, PHI Learning Private Limited, 2018.

Reference Book(S):

- 1. Dr. Anil Kumar Misra, *Building Materials and Construction*, 6th ed., New Delhi, S Chand and Company Limited, 2021.
- 2. SP62 (S&T): 1997 Bureau of Indian Standards, *Hand book on Building Construction Practices* (Excluding Electrical Work), New Delhi.

Web and Video link(s):

- 1. https://www.youtube.com/watch?v=NnIE2mDAmHENPTEL Video Lecture on Introduction to lean construction by Prof. N. Raghavan and Prof. Koshy Varghese, Department of Civil Engineering, IIT Madras.
- 2. https://www.youtube.com/watch?v=btajjXi0q9sNPTEL Video Lecture on Building Materials and construction by Dr. B. Bhattacharjee, Department of Civil Engineering, IIT Delhi.
- 3. https://www.youtube.com/watch?v=KZGNmzH7IdANPTEL Video Lecture on Masonry by Dr. B. Bhattacharjee, Department of Civil Engineering, IIT Delhi.

Laboratory Manual and Record Book (for laboratory component):

1. "Construction Practice Laboratory Manual and Record Book", prepared by Faculty of Department of Civil Engineering.

Course Learning Outcomes (COs)

After completion of this course, the students should be able to:

(Based on cognitive skills acquired from the theory component)

CO1: Identify the different building components and their specifications.

CO2: Distinguish substructure and superstructure of a building.

CO3: Recommend various types of temporary structures for construction and maintenance of a building.

CO4: Prioritize the essential services to be provided to a building.

(Based on psychomotor skills acquired from the laboratory component)

CO5: Create a layout plan and marking for building.

CO6: Construct brick wall and brick pier.

CO7: Create a layout plan for tile flooring.

CO8: Propose different types of temporary structures and various building services.

Cours	e Articulation N	U240	CI 214 2	X:CO	NSTI	RUCT	ION	PRAC	TICES	3				
CO	CO PO1 PO2				PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	U24CE214X.1	3	2	-	-	-	1	1	1	1	1	1	2	2
CO2	U24CE214X.2	3	2	-	-	-	-	1	1	1	1	1	2	2
CO3	U24CE214X.3	3	2	-	-	-	-	1	1	1	1	1	2	2
CO4	U24CE214X.4	3	2	-	-	-	-	1	1	1	1	1	2	2
CO5	U24CE214X.5	3	2	-	-	-	-	1	1	1	1	1	2	2
CO6	U24CE214X.6	3	2	-	-	-	-	1	1	1	1	1	2	2
CO7	U24CE214X.7	3	2	-	-	-	-	1	1	1	1	1	2	2
CO8	U24CE214X.8	3	2	-	-	-	-	1	1	1	1	1	2	2
U2	24CI214X	-	-	-	-	1	1	1	1	1	2	2		
3 - HIGH, 2 - MEDIUM, 1 - LOW														

Opp : Yerragattu Gutta, Hasanparthy (Mandal), WARANGAL - 506 015, Telangana, INDIA. काकतीय प्रैद्योगिकी एवं विज्ञान संस्थान, वरंगल - ५०६ ०१५ तेलंगाना, भारत පාර්ම්ණ බිසුන් පැරු විධාලවරාට, ජරගර - ೫೦೬ ೦೧೫ මෙටගත, ආරජය්රණ

Estd-1980

(An Autonomous Institute under Kakatiya University, Warangal)

KITSW

(Approved by AICTE, New Delhi; Recognised by UGC under 2(f) & 12(B); Sponsored by EKASILA EDUCATION SOCIETY)

website: www.kitsw.ac.in

E-mail: principal@kitsw.ac.in

(c): +91 9392055211. +91 7382564888

Semester -III Syllabi

S1.	Calara	Course	Community of the		Lecti	ıres/v	week		Credits
No.	Category	Code	Course Title	L	T	P	О	E	C
1	BSC	U24MH301A	Numerical and Statistical Methods (for Civil Engineering)	2	1	ı	6	9	3
2	PCC	U24CE302	Construction Materials	2	1	2	5	10	4
3	PCC	U24CE303	Surveying	2	1	2	5	10	4
4	PCC	U24CE304	Mechanics of Materials	2	1	-	4	7	3
5	ESC	U24CE305	Python Programming	2	1	2	5	10	4
6	VAC	U24VA306B	Soft and Interpersonal Skills	2		-	2	4	1
7	SEC	U24SE307	PSD LAB-02 (DSC)	-	-	2	2	4	1
8	ELC	U24EL308	Practicum-3	-	-	-	4	4	1
9	VAC	U24VA309	SEA-3 / SAA -3	-	-	-	2	2	1
10	AEC	U24AE310	Expert Talk Series-3	•	-	•	1	1	1
			Total:	12	5	8	36	61	24
Summ	er/ Inter-sem	Bridge Courses							
		s: 1 credit to e inted on grade s							

* Branch Specific Mathematics:

S. No.	Course Code	Course Title
1.	U24MH301A	Numerical and Statistical Methods (for Civil Engineering)
2.	U24MH301B	Applied Mathematics (Mechanical Engineering)
3.	U24MH301D	Applied Mathematics (Electronics and Communication Engineering)
4.	U24MH301E	Essential Mathematics and Statistics for Machine Learning (AI&ML)
5.	U24MH301F	Essential Mathematics and Statistics for Data Science (Data Science)
6.	U24MH301G	Applied Mathematics (Electrical & Electronics Engineering)

	Value Added Courses (VAC)													
Sr. No.	Course Type	Course Code	Course Name	Semester	Credits									
1.	VAC 01	U24CY106	Sports & Yoga	I	1									
2	VAC 02	U24VA109	SEA - I / SAA-1	I	1									
3	VAC 03	U24VA206	Environmental Studies	II	-									
4	VAC 04	U24VA210	SEA-2 / SAA -2	II	1									
5	VAC 07	U24VA306B	Soft & Interpersonal Skills	III	1									
6	VAC 06	U24VA309	SEA-3 / SAA -3	III	1									
7	VAC 05	U24VA406A	QALR	IV	2									
8	VAC 08	U24VA409	SEA - 4 / SAA - 4	IV	1									

NUMERICAL A	NUMERICAL AND STATISTICAL METHODS										
Class: B.Tech. III -Semester Branch: Civil Engineering											
Course Code:	U24MH301A	Credits:	3								
Hours/Week (L-T-P-O-E):	2-1-0-6-9	CIE:	60 %								
Total Number of Teaching Hours:	36 Hrs	ESE:	40 %								

This course will develop students' knowledge in /on...

LO1: finite differences, numerical derivatives and numerical integration

LO2: numerical solutions to systems of linear equations and ordinary differential equations.

LO3: random variables and probability distributions

LO4: testing of hypothesis for large and small samples

UNIT-I 9 Hrs

Numerical Analysis: Finite differences and difference operators, Newton's forward and backward interpolation formulae, Lagrange interpolation

Numerical Differentiation and Integration: First and second derivatives using forward and backward interpolation polynomials at the tabulated points, Gaussian quadrature formula, Trapezoidal rule, Simpson's $1/3^{rd}$ rule and Simpson's $3/8^{th}$ rule

Self-Learning Topics (SLTs): Additional problems on Trapezoidal rule, Simpson's 1/3rd rule and Simpson's 3/8th rule. [Text 1: topic 30.6, 30.7, 30.8, 32.7, Solved problem: 30.8,30.10]

UNIT-II 9 Hrs

Numerical Solution to System of Linear, Algebraic and Transcendental Equations: Gaussian elimination method, Jacobi Method and Guass-Siedel Iteration Method, Bisection method, Regula-Falsi method and Newton Raphson's method

Numerical Solution to Ordinary Differential Equations: Taylor's method, Picard's method, Euler's method and Runge - Kutta methods of second and fourth order

Self-Learning Topics (SLTs): Additional problems on Bisection method, Regula-Falsi method and Newton Raphson's method [Text 1: topic 28.2, Solved problem: 28.2,28.4,28.5 Practice problems: exercise 28.1 (1,3,6)], Additional problems on Taylor's series method, Euler's method and Runge - Kutta method of order four [Text 1: topic 32.3, 32.4, 32.7, Solved problem: 32.5,32.7,32.14 Practice problems: exercise 32.3 (3)]

UNIT-III 9 Hrs

Statistical Methods: Measures of central tendency, Measures of dispersion, Correlation, Regression-Lines of regression, Rank correlation

Probability: Review of the concepts of probability, Addition law of probability, Independent events, Multiplication law of probability, Random variables, Discrete and continuous probability distributions, Mean and variance of a distribution, Binomial distribution, Poisson distribution, and Normal distribution, Fitting of these probability distributions to the given data

Self-Learning Topics (SLTs): Additional problems on Measures of central tendency [Text 1: topic 25.5, Solved problems: 25.2, Practice problems: exercise 25.1 (3)], Additional problems on independent events [Text 1: topic 26.14,26.18], Additional problems on Poisson distribution [Text 1: topic 26.15]

UNIT-IV 9 Hrs

Sampling and Inference: Sampling distribution, Testing a Hypothesis, Null hypothesis, Alternative hypothesis, Errors in sampling, Critical region and level of significance, One tailed and two tailed tests, Procedure for testing of hypothesis, Test of significance for large samples (single mean and difference of means)

Test of significance for small samples: T-test for single mean and difference of means, F-test for comparison of variances, Chi-square test for goodness of fit

Self-Learning Topics (SLTs): Additional problems on Test of significance for large samples [Text 1: topic 27.7, Solved problem: 27.3], Additional problems on Chi-Square test [Text 1: topic 27.17, Solved problem: 27.18]

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

CO1: apply interpolation technique to solve various real-world problems.

CO2: apply numerical methods to find solution to ordinary differential equations

CO3: interpret the data using various statistical measures and probability distributions

CO4: apply exact sampling distributions in testing of hypothesis.

Textbook(s):

1. Grewal, B.S., *Higher Engineering Mathematics*, 43rd ed., Delhi, Khanna Publishers, 2017

Reference Book(s):

- 1. Kreyszig E, *Advanced Engineering Mathematics*, 10th ed., Inc, U.K, John wiely & sons, 2020
- 2. S. S. Sastry, *Introductory Methods of Numerical Analysis*, 5th ed., New Delhi: Prentice Hall of India, 2012.
- 3. T.K.V Iyengar etc, Probability and Statistics, S. Chand Publishers.
- 4. S.C. Gupta V.K. Kapoor, *Fundamentals of Mathematical Statistics*, 12th ed., New Delhi: Sultan Chand & Sons Publishers, 2020.

Web and Video link(s):

- 1. https://youtu.be/2NcQi41VX9g?si=IY5I42ue87U_EDx: NPTEL Video Lecture on Numerical methods. /Prof. R. Usha / IIT Madras
- 2. https://youtu.be/JyVWQZNfE1I?si=k7NOS4VBtnW33UMl: NPTEL Video Lecture on Introduction to Probability and Statistics-Binomial Distribution / Prof. G. Srinivasan / IIT Madras

Cours	Course Articulation Matrix (CAM): U24MH301A:- NUMERICAL AND STATISTICAL METHODS													
CO		PO	PSO	PSO										
		1	2	3	4	5	6	7	8	9	10	11	1	2
CO1	U24MH301A.1	2	2	1	1	-	-	-	1	1	-	1	1	1
CO2	U24MH301A.2	2	2	1	1	-	-	-	1	1	-	1	1	1
CO3	U24MH301A.3	2	2	1	1	-	-	-	1	1	-	1	1	1
CO4	U24MH301A.4	2	2	1	1	-	-	-	1	1	-	1	1	1
U24MI	-1301A	2	2	1	1	-	-	-	1	1	-	1	1	1
3 - HIGH, 2 - MEDIUM, 1 - LOW														

CONSTRU	JCTION MATERIAL	S									
Class: B.Tech. III -Semester Branch: Civil Engineering											
Course Code:	U24CE302	Credits:	4								
Hours/Week (L-T-P-O-E):	2-1-2-5-10	CIE:	60(%)								
Total Number of Teaching Hours:	60 Hrs	ESE:	40(%)								

This course will develop students' knowledge in /on...

LO1: identification of minerals and rocks

LO2: brick and stone masonry

LO3: importance of timber, plastic, glass and steel in construction

LO4: subsidiary materials of construction

UNIT - I 9 Hrs

Minerology of Construction Materials: Definition of mineral, Structure and classification of minerals, Properties of minerals, Mineralogical composition of common building materials, Influence of mineral composition on strength and durability, Identification of physical properties of minerals

Petrology of Construction Materials: Definition of rock, rock cycle, geological classification of rocks, physical and engineering properties of rocks, weathering of rocks, structural features of rocks, application of rocks as construction material, tests on rocks, IS codal provisions

Self-Learning Topics (SLTs): *Geological formation of rocks, Properties of granite, basalt, sandstone, limestone, quartzite and marble (Text 1, Chapter: 17, Topic: 17.1,17.2,17.3,17.4)*

UNIT-II 9 Hrs

Stone Masonry: Classification of stone masonry, Dressing of stones, Tests on building stones, Qualities of good building stone, IS codal provisions

Brick Masonry: Materials for brick masonry, Physical and chemical properties of bricks, IS classification of bricks, Bonds in brick work, Tests on bricks, Innovations in brick masonry

Self-Learning Topics (SLTs): Comparison of brick masonry and stone masonry (Text 2, Chapter:6, Topic: 6.23), Brick stone composite masonry, (Text 2, Chapter: 7, Topic: 7.3)

UNIT-III 9 Hrs

Timber and Plastics: Structure of timber, suitability of timber, defects of timber, commonly used timber in construction, seasoning, preservation, classification of plastics, moulding compounds, properties of plastics, use of PVC in civil engineering construction, IS codal provisions

Steel, Glass and Bitumen: Types of steel, Properties, Forms of steel, Testing of structural steel, Defects, Corrosion, Preventive measures, Composition and Properties of glass, Types and applications of bitumen, Codal provisions

Self-Learning Topics (SLTs): Classification of plastics, Thermos plastics and thermos setting plastics (*Text 3, Chapter: 23, pg 410*)

UNIT-IV 9Hrs

Roofing, Flooring and Formwork: Types of roofs and floors, Requirements of Formwork, Types of formworks, Modular shuttering, Slip forms, Scaffolding

Smart and Sustainable Materials: Innovative materials for self-healing concrete, Carbon fiber reinforcements, Eco-friendly composites, Fire-resistant materials, Materials for damp proofing, Termite proofing and thermal insulation

Self-Learning Topics (SLTs): *Types of roofs, (Text 2, Chapter: 15, Topic: 15.2) Types of flooring, (Text 2, Chapter: 12) Fire resistant construction, (Text 2, Chapter: 23, Topic: 23.9)*

LABORATORY COMPONENT

List of Experiments

- 1. Identification of quartz and feldspar minerals.
- 2. Identification of rock forming and ceramic minerals.
- 3. Determination of physical properties of rocks.
- 4. Identification of structural features of rocks.
- 5. Determination of compressive strength and water absorption of bricks.
- 6. Determination of crushing strength of stone/aggregate.
- 7. Determination of compressive strength of wood
- 8. Determination of stress-strain characteristics of structural steel.
- 9. Determination of the Young's modulus of the given material by conducting flexural test on simply supported beam.
- 10. Determination of the modulus of rigidity by conducting compression test on spring
- 11. Determination of the modulus of rigidity by conducting torsion test on steel
- 12. Demonstration of bonds in brick masonry.

Course Learning Outcomes (COs):

Upon completion of this course, the student will be able to

(based on cognitive skills acquired from theory component)

CO1: identify minerals and rocks

CO2: interpret brick and stone masonry

CO3: judge suitability of timber, plastic, glass and steel in construction

CO4: select subsidiary materials of construction

(based on psychomotor skills acquired from laboratory components)

CO5: examine different minerals and rocks based on physical properties

CO6: evaluate characteristics of bricks and stones based mechanical properties

CO7: estimate mechanical properties of structural steel

CO8: interpret subsidiary materials of construction

Text book(s):

- 1. N. Chennakeshavulu, *Textbook of Engineering Geology*, 3rd ed. New Delhi: Laxmi Publications Pvt. Ltd., 2018. (Chapters 1 to 5, 17)
- 2. Dr. B.C. Punmia, Er. Ashok K. Jain and Dr. Arun K. Jain, *Building Construction*, 11th ed., New Delhi, Laxmi Publications Pvt. Ltd. 2016
- 3. Eva Kultermann and William P. Spence *Construction, Materials, Methods, and Techniques Building for a sustainable future,* 5th ed. Cengage 2021(Part IV, chapters 15-23)

Reference Book(s):

- 1. S. P. Arora and Bindra, *A Textbook of Building Constructions*, 4th ed., Dhanpat Rai and Sons, 2010
- 2. S. K. Duggal, Building materials, 3rd ed., New Delhi New Age International Pvt., Ltd.,
- 3. S.C. Rangwala, K.S. Rangawala and P.S. Rangwala, Engineering Materials, Charotar Publishers, Feb.2019
- 4. IS 3495-1 to 4 (1992): Methods of tests of burnt clay building bricks. New Delhi, BIS, 1998.
- 5. IS 1121-3 (1974): Methods of Test for Determination of Strength Properties of Natural Building Stones, , New Delhi, BIS ,1974
- 6. IS 1786:2008 "High strength deformed steel bars and wires for concrete reinforcement-specification" New Delhi, BIS, 2008.
- 7. IS 432(Part-I& Part II) 1982: "Specification for mild steel and medium tensile steel bars and Hard drawn steel wires for concrete reinforcement". New Delhi, BIS, 2004

Web and Video link(s):

- 1. https://archive.nptel.ac.in/courses/105/106/105106206/NPTEL Video Lecture on Civil Engineering-Basic Construction Materials by Prof. Radhakrishna G. Pillai & Prof. Manu Santhanam, IIT Madras
- 2. <u>https://archive.nptel.ac.in/courses/105/102/105102088/NPTEL</u>Video Lecture on Civil Engineering Building materials and Construction by Dr. B. Bhattacharjee, IIT Delhi

Laboratory Manual Record Book (LMRB) (for laboratory component):

1. Construction Materials laboratory manual record book (LMRB) prepared by CED, KITSW

Course A	Articulation Mat	U24CE302 CONSTRUCTION MATERIALS												
СО		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CE302.1	3	2	-	1	-	1	1	1	1	-	1	2	1
CO2	U24CE302.2	3	2	-	1	-	1	1	1	1	-	1	2	1
CO3	U24CE302.3	3	2	-	1	-	1	1	1	1	-	1	2	1
CO4	U24CE302.4	3	2	-	1	-	1	1	1	1	-	1	2	1
CO5	U24CE302.5	3	2	-	1	1	1	1	1	1	-	1	2	1
CO6	U24CE302.6	3	2	-	1	1	1	1	1	1	-	1	2	1
CO7	U24CE302.7	3	2	-	1	1	1	1	1	1	-	1	2	1
CO8	U24CE302.8	3	2	-	1	1	1	1	1	1	-	1	2	1
U24CE	U24CE302 3 2 - 1					1	1	1	1	1	-	1	2	1
3 - HIGH, 2 - MEDIUM, 1 - LOW														

SURVEYING											
Class: B.Tech. III -Semester Branch: Civil Engineering											
Course Code:	U24 CE303	Credits:	4								
Hours/Week (L-T-P-O-E):	2-1-2-5-10	CIE:	60 %								
Total Number of Teaching Hours:	60 Hrs	ESE:	40 %								

This course will develop students' knowledge in /on...

LO1: principles of surveying using chain, tape and theodolite

LO2: levelling, contouring, computation of areas and volumes

LO3: tacheometry, trigonometric survey and setting out curves

LO4: photogrammetry, Remote sensing & Geographic Information System, total station and Global Positioning System

THEORY COMPONENT UNIT-I 9 Hrs

Linear Measurements and Bearings : Types of chain and tapes, Tape corrections, Bearings, computation of bearings from included angles and vice versa, Magnetic declination, and Local attraction

Theodolite and traverse surveying: Temporary and permanent adjustments, Measurement of angles, Fundamental lines and relations, Traverse methods and computations, Balancing traverse

Self-Learning Topics (SLTs): Units of measurements (Text2: topics 1.5,1.6), Sources of errors (Text2: topics: 2.2,2.3), Basic problems in chaining (Text 2: Topics 4.8,4.9,4.11), Miscellaneous operations (Text2: topics: 6.7), Solved problems (Text 2: Problems 5.9 to 5.13), Office work (Text1:1.5,1.6,1.7)

UNIT-II 9 Hrs

Levelling and contouring: Definitions, Terms and abbreviations, Methods of levelling, Differential, Profile, Cross section levelling, Characteristics of contours, Methods of contouring, Interpolation of contours, Contour gradient, Uses of contour maps

Areas and volumes: Areas computed by sub division into triangles, Offsets from baseline, Calculations of volumes for same level sections by prismoidal and trapezoidal formula, Volume from spot levels, Capacity of reservoir

Self-Learning Topics (SLTs): Problems on Height of instrument, RISE & FALL Methods (Text2: topics 9.1, 9.2), Contour interpolation, gradient (Text2: 10.5 to 10.7), Derivation of Prismoidal and trapezoid formulae (Text2: topics 13.7, 13.8), Problems of volumes (Text2: topics 13.1 to 13.4)

UNIT-III 9 Hrs

Tacheometry and trigonometric surveying: Types of tacheometric measurements, Determination of tacheometric constants, Distance and elevation formulae and uses of tacheometric survey, Trigonometric survey with accessible and inaccessible bases

Curves: Setting out simple curves by linear methods and Rankine's deflection angle method, Setting out compound, Transition curves with basic data of chainage, Radius and deflection angles, Advantages of transition curve

Self-Learning Topics (SLTs): Derivation of Tacheometric constants (Text2: topics 22.4), Distance and Elevation formulae for different tacheometric systems (Text2: topic 22.5 to 22.7, 22.13), Problems on different tacheometric systems (Text2: topics 22.1, to 22.4, 22.17 to 22.18), Problems on determination of elements of curve, compound curve (Text2: topics 2.1,2.2), Introduction to transition curves (Text2: topics 3.1,3.2)

UNIT-IV 9 Hrs

Photogrammetry and RS&GIS: Types of photographs, scale of vertical photograph, Relief displacement, Introduction and process of remote sensing, Types of platforms, Sensors and applications, GIS introduction, Components, Data types, Functionalities of GIS

Advanced surveying instruments: Features of total station, Setting up and orienting, Capabilities and advantages of total station, Introduction to GPS, Segments, Uses and applications

Self-Learning Topics (SLTs): Derivations of scale of vertical photograph, Relief displacement (Text1: topics 14.11,14.14), Components and functionalities of GIS (Text1: topic 8.0 to8.10), Introduction to Total station and GPS (Text1: topic 9.0, 9.4, 10.2)

LABORATORY COMPONENT

List of Experiments

- 1. Introduction to instruments and basic linear measurements
- 2. Horizontal angle measurement by repetition and reiteration methods
- 3. Theodolite traversing Closed traverse
- 4. Levelling temporary adjustments and recording staff readings
- 5. Longitudinal and Cross-section Levelling
- 6. Trigonometric Levelling Single Plane method and Double Plane method
- 7. Determination of tacheometric constants, horizontal distance and elevation using tacheometry
- 8. Determination of gradient between two inaccessible points by tangential tacheometry
- 9. Plot contour maps of a given area using tacheometer
- 10. Setting out simple curve and compound curve by Rankine's deflection angle method
- 11. Determination of lengths and directions of consecutive survey lines and conduct a traverse using total station
- 12. Determination of area, elevation of remote object and gradient between two inaccessible points using total station

Course Learning Outcomes (COs):

After completion of this course, the students should be able to... (based on cognitive skills acquired from theory component)

CO1: prepare traverse maps using chain, tape and theodolite.

CO2: develop contour maps, longitudinal cross sections and estimate the areas, volumes.

CO3: estimate the elevations using tacheometry, trigonometric levelling and design the curves

CO4: appraise the use of photogrammetry, Remote sensing & Geographic Information System, total station and Global Positioning System.

(based on psychomotor skills acquired from laboratory component)

CO5: analyze chain surveying data for linear measurements, areas and establish precise survey lines using theodolite angle measurements.

CO6: compute reduced levels, create sectional profiles, and conclude terrain features from auto-level observations.

CO7: apply tacheometry to determine horizontal distances and elevations, analyze gradients using tangential methods, and synthesize contour maps for terrain modeling.

CO8: interpret advance surveying techniques and set out the curves.

Text book(s):

- 1. S.K. Duggal, "Surveying Volume I and II", 5th ed., McGraw Hill Education (India) Pvt, Ltd, 2019.
- 2. B.C. Punmia & Ashok Kumar Jain, "Surveying-Volume I, II and III", 17th ed., Laxmi Publications, 2016.

Reference Book(s):

- 1. K.R. Arora, "Surveying Volume I and II", 15th ed., Standard Book House, 2015.
- 2. T.P. Kanetker and S.V. Kulkarni, "Surveying and Levelling Volume I and II", 24th ed., Pune Vidyarthi Griha Prakashan, 2014.
- 3. R. Subramanian, "Surveying and Levelling", 2nd ed., New Delhi, Oxford University Press, 2007.
- 4. R.Agor, "A Textbook of Surveying and Levelling", 12th ed., Khanna Publisher, 2016.

Web and Video link(s):

- 1. https://nptel.ac.in/courses/105104101 NPTEL Video Lecture on Surveying by Dr. Bharat Lohani, IIT Kanpur.
- 2. https://nptel.ac.in/courses/105107121 NPTEL Video Lecture on Modern Surveying Techniques by Prof. S.K. Ghosh, IIT Roorkee.
- 3. https://nptel.ac.in/courses/105107158 NPTEL Video Lecture on Digital Land Surveying and Mapping (DLS&M), Prof. Jayanta Kumar Ghosh, IIT Roorkee.

	Course Articu													
	СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	CO	1	2	3	4	5	6	7	8	9	10	11	1	2
CO1	U24CE303.1	2	2	1	1	1	1	-	-	1	-	2	2	1
CO2	U24CE303.2	2	2	1	1	1	1	1	-	2	-	2	2	1
CO3	U24CE303.3	2	2	1	1	1	1	1	-	2	-	2	2	1
CO4	U24CE303.4	2	1	1	1	2	1	1	-	1	-	2	2	1
CO5	U24CE303.5	2	2	2	1	2	1	1	3	2	-	2	2	1
CO6	U24CE303.6	2	2	2	1	2	1	1	3	2	-	2	2	1
CO7	U24CE303.7	2	2	2	1	2	1	1	3	2	-	2	2	1
CO8	U24CE303.8	2	2	2	1	2	1	1	3	2	-	2	2	1
U	U24CE303 2 1.87 1.5 1				1	1.62	1	1	3	1.75	-	2	2	1
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

MECHAN	MECHANICS OF MATERIALS											
Class: B.Tech. III -Semester Branch: Civil Engineering												
Course Code:	U24CE304	Credits:	3									
Hours/Week(L-T-P-O-E):	2-1-0-4-7	CIE:	60(%)									
Total Number of Teaching Hours:	36 Hrs	ESE:	40(%)									

This course will develop students 'knowledge in/on...

LO1: methods to evaluate slope and deflection for determinate beams and trusses

LO2: slope and deflection for beams and trusses

LO3: direct stresses, bending stresses and critical load on columns

LO4: analysis of portal frames using Castigliano's theorem and failure theories

UNIT-I 9 Hrs

Deflection of beams: Macaulay's method and Moment Area method to calculate the slope and deflection of simply supported and cantilever beams

Unit load method: Concepts of strain energy, Deflection of beams and application to deflection of determinate plane truss

Self-Learning Topics (SLTs): Methods of determining Slope and Deflection of beams (Text 1: Topics12.2), Practice Problems (Text1: chapter 12, Practice Prob. 1,2,3,4,5,6,7,8) Solved Problems (Text1: Prob 12.2,12.3,12.4,12.11,12.13), Practice Problems (Text 1: chapter 15, Practice problems. 15.1,15.2, 15.6) Solved Problems (Text1: Prob 15.6,15.7.15.8)

UNIT-II 9 Hrs

Castigliano's method: Slope and deflection of beams using Castigliano's theorem-I and deflection of determinate plane truss

Fixed and continuous beams: Analysis of fixed beams for shear force and bending moment, Deflection of fixed beams, Analysis of continuous beams using Clapeyron's theorem of three moments

Self-Learning Topics (SLTs): Methods to determine slope and deflection using Castigliano's Theorems (Text 1, Topic 16.1), Practice Problems (Text1, chapter 16, Practice prob. 16.1,2,3,4) Solved Problems (Text1, Prob.16.9,16.10,16.11)

UNIT-III 9 Hrs

Direct and bending stresses: Stresses in a member subjected to axial, Uniaxial and biaxial loading, Core or kernel of a section, Wind pressure on chimneys

Columns and struts: Euler's theory, Euler's critical load for columns with various end conditions, Limitations, Rankine's hypothesis, IS code formula

Self-Learning Topics (SLTs): Direct and bending stresses for various sections, (Text1, Chapter 18, Topics 18.1 to 18.6) Practice problems (Text1, Chapter 18, Prob. 18.1, 18.2, 18.3,18.4) Solved {problems (Text1, Prob 18.8,18.9,18.10)

UNIT-IV 9 Hrs

Statically indeterminate frames: Analysis of statically indeterminate portal frames up to two degrees of indeterminacy using Castigliano's theorem-II

Theories of failure: Maximum principal stress theory, Maximum principal strain theory, Maximum shear stress theory, Strain energy theory and Shear strain energy theory, Applications

Self-Learning Topics (SLT's): Analysis of Statically indeterminate structures using Castigliano's Theorem-II, Text 2, Topic 17.1, 17.2) Practice Problems (Text2, Chapter 17, Prob. 17.1,17.2,17.3) Solved Problems (Text2, prob. 17.3,17.4,17.5,17.6)

Course Learning Outcomes(COs):

After completion of this course, the students should be able to...

CO1: evaluate slope and deflection of determinate beams and trusses

CO2: estimate the slope and deflection for beams & trusses

CO3: determine the direct & bending stresses and critical load on columns

CO4: analyze portal frames using Castigliano's theorem and interpret failure theories to beams

Text books:

- 1. B. C Purnima, K. Arun Jain, K. Ashok Jain, "Mechanics of Materials", 15th ed., New Delhi, Laxmi Publications Pvt. Ltd., 2014.
- 2. Gunneswara Rao T.D. and Mudimby Andal, "Strength of Materials", 1st ed., Cambridge University Press, 2018.

Reference Books:

- 1. H.J. Shah and S.B. Junnarkar, "Mechanics of Structures, Volume-I and Volume-II", 31st ed., Charotar Publishing House Pvt. Ltd., Anand, 2014.
- 2. R.K. Bansal, "A text book of Strength of Materials", 4th ed., Laxmi Publications, 2010.
- 3. Andrew Pytel and L.Ferdinand Singer, "Strength of Materials", 4th ed., New York, Harper and Row Publishers, 2011.

Web and Video link(s):

- 1. https://youtu.be/GÜÖKSExdjq8?si=bYDU2uuuvorS51wT NPTEL Video Lecture on Deflection of Beams by Prof.S.K. Bhattacharya, Department of Civil Engineering, I.I.T. Kharagpur
- 2. https://youtu.be/vi0tjfDSjNY?si=IqmDLT5MDKKOZ0Km NPTEL Video Lecture on Deflection of Beams II by Prof.S.K. Bhattacharya, Department of Civil Engineering, I.I.T. Kharagpur
- 3. https://youtu.be/sP34uzn7diA?si=eOy0tbQqM-1Pjd-P NPTEL Video Lecture on Direct and Bending Stresses in Beams I Prof. S.K. Bhattacharya, Department of Civil Engineering, I.I.T. Kharagpur
- 4. https://youtu.be/6CLEWA2WNqM?si=ioUB8HOzUw0DTfQSNPTEL Video Lecture on Failure Theories by Dr. Ravindra Gettu, Department of Civil Engineering, IIT Madras.

Cou	rse Articulatio	U24CE304 MECHANICS OF MATERIALS												
	CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CE304.1	2	2	-	1	1	1	1	1	1	-	1	1	1
CO2	U24CE304.2	2	2	-	1	1	1	1	1	1	-	1	1	1
CO3	U24CE304.3	2	2	-	1	1	1	1	1	1	-	1	1	1
CO4	U24CE304.4	2	2	-	1	1	1	1	1	1	-	1	1	1
U24CE304 2 2 - 1 1					1	1	1	1	-	1	1	1		
3 - HIGH, 2 - MEDIUM, 1 - LOW														

PYTHON PROGRAMMING								
Class: B.Tech. III -Semester Branch: Civil Engineering								
Course Code:	U24CE305	Credits:	4					
Hours/Week (L-T-P-O-E):	2-1-2-5-5	CIE Marks:	60 %					
Total Number of Teaching Hours:	60 Hrs	ESE Marks:	40%					

This course will develop students' knowledge in /on...

LO1: basics of python programming, operators, control statements & functions in Python

LO2: namespaces, modules, collections, string handling methods & regular expressions

LO3: object oriented programming, inheritance, polymorphism, files, threads & database connectivity using SQLite

LO4: Numpy, Pandas and Matplotlib libraries of Python

THEORY COMPONENT	
UNIT-I	9 Hrs

Introduction: Features of Python, The future of Python, Writing and executing Python programs **Python Preliminaries:** Literal constants, Variables and identifiers, Data types, Input operation, Comments, Reserved words, Indentation, Operators, Expressions in Python, Type conversion

Decision Control Statements: Selection/Conditional branching statements, Loop structures/ iterative statements, Nested loop, the continue statement, the pass statement, the else statement used with loops

Functions: Function definition, Function call, Variable scope and lifetime, the return statement, Advances in defining in functions, Lambda functions, Recursive functions

Self Learning Topics (SLTs): More on Defining Functions (Text1:chapter 5)

UNIT-II 9 Hrs

Modules and Name Spaces: The from...import statement, Naming module, the dir() function, Packages in Python, Standard library modules, globals(), locals(), and reload(), Function redefinition

Python Strings: String operations, String formatting operator, Built-in string methods and functions, slice operation, ord() and Chr() Functions, in and not in operators, Comparing strings, Regular expressions and meta characters

Data Structures: Lists, Tuple, Sets, Dictionaries

Self Learning Topics (SLTs): List Comprehension and Tuples, Variable-length Argument Tuples, The zip() Function (Text1:chapter 8)

UNIT-III 9 Hrs

Python Object Oriented Programming: Classes and objects, Class method and self-argument, The __init__() method, Class variables and object variables, The __del__() method, Public and private data members, Private methods, Calling a class method from another class method, Built-in class attributes, Class methods, Static methods, Inheritance and polymorphism

Operator overloading: Advantage of operator overloading, Implementing operator overloading

Error and Exception handling: Introduction to Errors and Exceptions, handling Exceptions, Multiple Except Blocks, Built-in and User-defined Exceptions, The finally Block

File Handling: Opening and closing files, Reading and writing files, File positions, Renaming and deleting files, Directory methods

Threads: An introduction to python threading, Multithreading in python

Database Connectivity: SQLite, Creating a database table, Insert and retrieve data from database

Self-Learning Topics (SLTs): Abstract classes and interfaces, Garbage Collection (Text1: chapter 9), Multiple Exceptions in a Single Block, Serialization, Database browser for SQLite (Text1: chapter 12)

UNIT-IV 9 Hrs

NumPy: The basics of NumPy arrays, Array indexing, Array slicing, Reshaping of array, Concatenation and splitting arrays, Introducing UFuncs

Data Manipulation with Pandas: Installing and using Pandas, Introducing Pandas objects, data indexing and selection, Handling missing data, Combining datasets, Merge and join, Aggregation and grouping

Visualization with Matplotlib: Importing Matplotlib, Saving figures to files, Simple line plots, Simple scatter plots, Histograms, Binnings, and density

Self Learning Topics (SLTs):Plotting data on maps, Python advanced libraries introduction: Scikitlearn, Seaborn, SciPy

LABORATORY COMPONENT

List of Experiments

Experiment-I:

- 1. Installation of Python and verifying PATH environment variable
- 2. Running instructions in Interactive interpreter and a python script
 - a. Executing instructions in Python Interactive Interpreter
 - b. Running python scripts in Command Prompt
 - c. Running python scripts in IDLE
- 3. Write a program to demonstrate importance of indentations. Purposefully raise indentation error and correct it
- 4. Write a program to take input text as command line argument and display it on screen

Experiment-II

- 1. Write a program that takes 2 numbers as command line arguments and print its sum
- 2. Write a program to check whether the given number is even or odd
- 3. Write a program to calculate GCD of 2 numbers
- 4. Write a program to find Exponentiation (Power) of a number
- 5. Write a program to find given year is leap year or not
- 6. Write a program to develop a simple calculator

Experiment-III

- 1. Write a program to find the Factorial of a given number
- 2. Write a program to evaluate the Fibonacci series for a given number 'n'
- 3. Write a program to find the Armstrong for a given number
- 4. Write a program to find sum of N numbers
- 5. Write a program to take a number as input, and print countdown from that number to zero (use while loop)
- 6. Write a program to find circulating 'n' values

Experiment-IV

- 1. Write a program to implement a module using import statement (Use python source file as a Module and implement import statement another python source files)
- 2. Write a program to implement from, import statement
- 3. Write a program to implement dir() function
- 4. Write a program to demonstrate packages in python

Experiment-V

- 1. Write a python program on strings for the following
 - a. To display substring in a string
 - b. To update an existing string
 - c. To implement string concatenation
 - d. To demonstrate string formatting operator

Experiment-VI

- 1. Write a program to demonstrate use of slicing in strings
- 2. Write a program to compare two strings
- 3. Write a program which prints the reverse of a given input string. (use a function with name
- 4. Reverse string and call this function for performing the operation)
- 5. To demonstrate built-in string methods
- 6. Write a program to demonstrate list and related functions

Experiment-VII

- 1. Write a program to demonstrate tuple, set and related functions
- 2. Write a program to demonstrate dictionaries
- 3. Write a program to demonstrate RegEx functions
- 4. Write a program to demonstrate regular expressions using Meta characters

Experiment-VIII

- 1. Write python program for the following
 - a. To demonstrate classes and objects
 - b. To demonstrate class method and static method
 - c. To demonstrate inheritance
- 2. Write python program on file operations for the following
- a. To open and read data from a file
- b. To write data into a file
- c. To compute number of characters, words, lines in a file

Experiment-IX

- 1. Write python programs to implement database connectivity
- a. Install and verify SQLite Connector for Python
- b. To connect check SQLite Database connectivity
- c. To retrieve and display data from a table
- d. To insert data into a table
- e. To delete rows in a table

Experiment-X

- 1. Install and setup NumPy environment
- 2. Write a program to demonstrate NumPy array
- 3. Write a program to demonstrate Slice operation
- 4. Write a program to demonstrate Reshaping of an array

Experiment-XI

- 1. Install and setup pandas environment
- 2. Write a python pandas program to create a series from an ndarray
- 3. Write a python pandas program to demonstrate indexing and selecting data

Experiment-XII

- 1. Install and setup matplotlib
- 2. Write a program to draw a simple line plot
- 3. Write a program to draw a histogram plot
- 4. Customize plots and experiment with different maps plots

Text book(s):

- 1. Reema Thareja, *Python Programming using problem solving approach*, New Delhi: Oxford University Press, 2017. (Chapter 1 to 7)
- 2. Jake Vander Plas, *Python Data Science Handbook- Essential Tools for Working with Data*, California: O'Reilly Media Inc., 2016. (*Chapter 2 to 4*)

Reference Book(s):

1. Dr. Charles R. Severance, *Python for Everybody-Exploring Data Using Python*, open book, 2016

- 2. David Beazley, Python Cookbook, 3rd ed., California: O'Reilly Media, Inc., 2013
- 3. Caleb Hattingh, 20 Python Libraries You Aren't Using (But Should), 2nd ed., California:O'Reilly Media, Inc., 2016
- 4. Magnus Lie Hetland, *Beginning: from Novice to Professional*, 1st ed. New York City: A press, 2005.

Web and Video link(s):

- 1. https://onlinecourses.nptel.ac.in/noc23_cs99/NPTEL Video Lecture on Python For Data Science by By Prof. Ragunathan Rengasamy, IIT Madras.
- 2. https://onlinecourses.nptel.ac.in/noc25_cs17NPTEL Video Lecture on Data Analytics with Python By Prof. A Ramesh, IIT Roorkee.
- 3. https://onlinecourses.nptel.ac.in/noc25_cs69/NPTEL Video Lecture on The Joy of Computing using Python By Prof. Sudarshan Iyengar, IIT Ropar

Laboratory Manual (for laboratory component):

1. Python Programming Laboratory Manual and Record Book, Department of CSE (AI & ML), KITSW.

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

(based on cognitive skills acquired from theory component)

CO1: apply Python syntax, control structures, operators, and functions to develop structured programs for basic problem solving

CO2: develop modular Python programs using strings, regular expressions, built-in collections, and namespaces for efficient data handling

CO3: develop Python applications using object-oriented principles, exception handling, file operations, operator overloading, threads and database connectivity

CO4: analyze and visualize data using Python libraries such as NumPy, Pandas, and Matplotlib for data science applications

(based on psychomotor skills acquired from laboratory component)

CO5: construct Python programs by applying operators, control structures, and user-defined functions to address basic computational problems.

CO6: demonstrate the use of namespaces, packages, string handling functions, regular expressions, and built-in data structures to develop optimized Python programs

CO7: develop object-oriented programs by creating custom classes, manipulating objects, handling files, threads and executing database operations in Python

CO8: design visual representations of data using Matplotlib and experiment with Numpy and Pandas libraries to analyze datasets programmatically

Course Articulation Matrix (CAM):					U24CE305: PYTHON PROGRAMMING									
CO		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CE305.1	1	2	2	2	2	1	-	-	-	1	1	2	2
CO2	U24CE305.2	2	2	2	2	2	1	1	-	-	1	1	2	2
CO3	U24CE305.3	2	2	2	2	3	1	-	-	-	1	1	2	2
CO4	U24CE305.4	2	2	2	2	3	1	1	-	-	1	1	2	2
CO5	U24CE305.5	1	2	2	2	2	1	1	1	1	1	2	2	2
CO6	U24CE305.6	2	2	2	2	2	1	1	1	1	1	2	2	2
CO7	U24CE305.7	2	2	2	2	3	1	1	1	1	1	2	2	2
CO8	U24CE305.8	2	2	2	2	3	1	1	1	1	1	2	2	2
U	24CE305	1.75	2	2	2	2.5	1	1	1	1	1	1.5	2	2
3-HIGH, 2-MEDIUM, 1-LOW														

SOFT AND INTERPERSONAL SKILLS LABORATORY									
Class: B.Tech. III -Semester & IV-Semester Branch: Common to all Branches									
Course Code:	U24VA306B	Credits:	1						
Hours/Week (L-T-P-O-E):	0-0-2-2-4	CIE:	100 %						
Total Number of Teaching Hours:	24 Hrs	ESE:	-						

This course will develop students' knowledge in /on...

LO1: analysing self and learning to overcome possible threats

LO2: group dynamics to demonstrate respect for the opinions and beliefs of group

LO3: effective presentations using visual aids and analyzing the videos

LO4: communicating professionally, making resume in line with industry expectations

LIST OF ACTIVITIES

Activity 1: Ice-breaking, Self-Awareness and Just a Minute (JAM)

Activity 2: Self-Introduction & Personal SWOT Analysis

Activity 3: Reading Comprehension & Critical Thinking

Activity 4: Active Listening & Non-Verbal Observation (Video + Peer Practice)

Activity 5: Group Discussion - 1

Activity 6: Resume Building & LinkedIn Profile Review

Activity 7: Group Discussion - 2

Activity 8: Presentation Skills with PPT / Storytelling

Activity 9: Group Discussion - 3

Activity 10: Mock Interviews: Technical & HR

Activity 11: Email Etiquette & Professional Communication

Activity 12: Workplace Etiquette & Conflict Resolution

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

CO1: deliver concise & effective self-introduction and demonstrate confidence, spontaneous speaking skills within a limited time

CO2: conduct a personal SWOT analysis to identify areas for self-improvement and career development

CO3: demonstrate clear & respectful communication, leadership, positive attitude and improve interpersonal relationship by actively participating in group discussions, collaborative tasks & mock interviews

CO4: create a professional resume, develop a LinkedIn profile and demonstrate effective video communication by making effective videos on self-introduction, personal SWOT analysis & spontaneous speaking activity along with email & workplace etiquette

Textbook(s):

1. Krishna Mohan & Meera Benerji, *Developing Communications Skills*, 2nd ed., New Delhi: Mcmillan Publications, 2005

Course Articulation Matrix (CAM):					U24VA406B SOFT AND INTERPERSONAL SKILLS LABORATORY									
	СО	PO	PO	PO	РО	РО	РО	РО	РО	РО	PO	PO	PSO	PSO
		1	2	3	4	5	6	7	8	9	10	11	1	2
CO1	U24VA406B .1	-	-	-	-	_	-	_	2	3	-	1	-	-
CO2	U24VA406B .2	-	-	-	-	-	-	2	3	3	-	1	-	-
CO3	U24VA406B .3	-	-	-	-	-	-	-	2	3	-	1	-	-
CO4	U24VA406B .4	-	-	-	-	-	-	1	2	3	-	1	-	-
U24VA406B					-	-	-	1.5	2.25	3	-	1	-	-
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

PRACTICUM - 3									
Class: B.Tech. III-Semester Branch: Common to all branches									
Course Code:	U24EL308	Credits:	1						
Hours/Week (L-T-P-O-E):	0-0-0-4-4	CIE:	100%						
Total Number of Teaching Hours:	-	ESE:	-						

This course will develop students' knowledge in /on...

LO1: literature review and identifying research gaps

LO2: implementing a project independently by applying knowledge to practice

LO3: preparing well-documented report and informative PPT

LO4: effective technical presentation and creating video pitch

Practicum is an independent project carried out by the student during the course period, under the supervision of allotted course faculty. It helps to reinforce the students' theoretical knowledge and develop their ability to apply this knowledge to the solution of practical problems. Practicums also prepare them for their MINI and MAJOR PROJECTs and for independent work in their chosen field that promotes creative abilities. Besides they provide Higher Order Cognitive Abilities (HOCAs).

- (i). Practicum is a mandatory semester project work.
- (ii). Practicum is offered as a one credit course. Student has to earn 4 credits (one in each semester from I to IV semesters)
- (iii). Allotment of Practicum topics for students:
- o **Practicum matrix:** In week (-1), the class teacher, in consultation with HoD, shall prepare the practicum matrix of the section. The practicum matrix is the allotment of group of students to the different course faculty of the section, as shown below.

Course	U24MH301A	U24CE302	U24CE303	U24CE304	U24CE305	U24VA306B
	B24XX001	B24XX011	B24XX021	B24XX031	B24XX041	B24XX051
	B24XX002	B24XX012	B24XX022	B24XX032	B24XX042	B24XX052
	B24XX003	B24XX013	B24XX023	B24XX033	B24XX043	B24XX053
Students	B24XX004	B24XX014	B24XX024	B24XX034	B24XX044	B24XX054
allotted to	B24XX005	B24XX015	B24XX025	B24XX035	B24XX045	B24XX055
different	B24XX006	B24XX016	B24XX026	B24XX036	B24XX046	B24XX056
courses	B24XX007	B24XX017	B24XX027	B24XX037	B24XX047	B24XX057
	B24XX008	B24XX018	B24XX028	B24XX038	B24XX048	B24XX058
	B24XX009	B24XX019	B24XX029	B24XX039	B24XX049	B24XX059
	B24XX010	B24XX020	B24XX030	B24XX040	B24XX050	B24XX060

- o In week (-1), the class teacher of a section shall collect 10-12 topics for practicum from each of the course teachers of that section.
- o The class teacher, in consultation with HoD shall allot the practicum topics to the students of that section in the following format.

CIRCULAR

Allotment of Practicum topics to students

Section :

S.No.	Roll number of the	Practicum topic	Practicum under the	Course
5.100.	student	allotted	course	faculty

Note:

- 1. The students should meet immediately the allotted course faculty for practicum and start working on the practicum with the guidance of course faculty.
- 2. To complete the Practicum, the student shall work in laboratories under supervision of allotted course faculty, in the allotted hours in the classwork timetable and also outside the class work hours during weekdays.
- 3. The course faculty are advised to guide the allotted students for practicum during the semester course work.

(Signature of class teacher)

- (iv). To complete the practicum, the student shall work in laboratories under supervision of allotted course faculty, in the allotted hours in the classwork timetable and outside the class work hours during weekdays.
- (v). There shall be only continuous Internal Evaluation (CIE) for practicum for a maximum of 100 marks.
- (vi). The practicum course faculty shall evaluate & submit the final marks of the allotted students in week (N+1) to the respective class teacher.
- (vii). The class teacher shall collect the final marks of practicum of the students allotted to each course teacher and submit them to the CoE.
- (viii). Course faculty shall follow his/her own rubrics for practicum evaluation. Focus shall be on knowledge, skills & qualities acquired by the student during the practicum course
 - (ix). A sample rubrics for assessment and evaluation of practicum is as follows:

Literature survey & Identification of research gaps	10 marks
Working model / process / software package / system developed	30 marks
Report writing (subjected to max of 30% plagiarism)	20 marks
Oral presentation with PPT and viva-voce	20 marks
Video pitch	20 marks
Total	100 marks

<u>Note</u>: It is mandatory for the student to appear for oral presentation and viva-voce to qualify for course evaluation of Practicum.

- (h) **Practicum Topic**: Each student shall be allotted a topic for practicum by the course faculty member attached to him/her. Interested students can work on their own title for practicum, but with due approval from course faculty.
- (i) **Working Model**: Each student is required to develop a prototype / process / system/simulation model on the given practicum topic and demonstrate/present, during the allotted time, before the course teacher.

- (j) **Report:** Each student is required to submit a well-documented report on the allotted practicum topic as per the format specified by the course faculty. The student shall include answers to the following questions in the report and ppt presentation.
 - o What was the objective of the practicum assigned?
 - o What are the main responsibilities and tasks for practicum?
 - o What knowledge and skills from the coursework are applied in the practicum?
 - o What new knowledge and skills are acquired during the practicum?
 - o In what ways, can the practicum be helpful for the professional career?
 - o What gaps are identified in your practicum work?
 - What improvements or changes you suggest for addressing the identified gaps for future work?
- (k) **Anti-Plagiarism Check:** The practicum report should clear plagiarism check as per the Anti-Plagiarism policy of the institute
- (l) **Presentation:** Each student should prepare PPT with informative slides and make an effective oral presentation before the course teacher as per the schedule notified by the department
- (m) **Video Pitch:** Each student should create a pitch video, which is a video presentation on his / her Practicum. Video pitch should be no longer than 5 minutes by keeping the pitch concise and to the point, which shall also include evidence like videos & pics at the time of implementing the practicum and also key points about his / her business idea / plan (*if any*) and social impact
- (n) The student has to register for the Practicum as a supplementary examination in the following cases:
 - iv) he/she is absent for oral presentation and viva-voce
 - v) he/she fails to submit the report in prescribed format
 - vi) he/she fails to fulfill the requirements of Practicum evaluation as per specified guidelines

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

- CO1: synthesize literature survey, identify research gaps and define objective & scope of practicum problem
- CO2: apply knowledge to design & conduct experiments, utilize modern tools for solution of practicum problem and develop working model/ process/ system
- **CO3**: demonstrate the generic competencies in making a well-documented report portraying knowledge, skills, qualities acquired through practicum
- **CO4**: create a video pitch on practicum and make an effective oral presentation using PPTs

Course	Articulation I	Matrix ((CAM):		U24EL308 PRACTICUM-3													
СО		PO	PO	PO 3	PO 4	PO 5	PO 6	PO	PO 8	PO 9	PO 10	PO 11	PS O1	PSO 2				
		1		3	7	3	U	/	О	9	10	11	OI					
CO1	U24EL308.1	2	2	2	2	2	2	2	2	2	2	2	2	2				
CO2	U24EL308.2	2	2	2	2	2	2	2	2	2	2	2	2	2				
CO3	U24EL308.3	2	2	2	2	2	2	2	2	2	2	2	2	2				
CO4	U24EL308.4	2	2	2	2	2	2	2	2	2	2	2	2	2				
U24EL308 2 2			2	2	2	2	2	2	2	2	2	2	2					
		•	3	- HIGH	I, 2 – M	IEDIU	M, 1 -	3 - HIGH, 2 - MEDIUM, 1 - LOW										

SOCIAL EMPOWERMENT ACTIVITY - 3 / SELF ACCOMPLISHMENT ACTIVITY - 3 (SEA -3/SAA- 3)

Class: B.Tech. III-Semesters	Branch: Common to all branches					
Course Code:	U24VA309	Credits:	1			
Hours/Week (L-T-P-O-E):	0-0-0-2-2	CIE:	100%			
Total Number of Teaching Hours:	-	ESE:	-			

Course Learning Objectives (LOs):

This course will develop students' knowledge in /on...

- **LO1: holistic development** through activity-based learning to gain real-life experience which effectively help individuals deal appropriately with problems/challenges
- **LO2: positive mindset** by actively adopting optimism, acceptance, resilience, gratitude, mindfulness, and integrity and handling rejection in life
- LO3: skills for effective fieldwork practice, which include ethics, observation, communication, interviewing, problem solving, time management, organisation and documentation
- **LO4:** making a well-documented report and an effective oral presentation through PPTs portraying knowledge, skills, qualities acquired and social impact of the activity

Activity Based Liberal Learning about Life, Literature and Culture (ABLL@LLC) is introduced for building **generic competencies** in students. ABLL is aimed at all dimensional holistic growth of the learner. The holistic development includes the **physical**, **emotional**, **cognitive**, **spiritual and social aspects**. This is an area which opens the decision-making process, helps the student to develop creativity, an analytical mind, and builds resilience, confidence, hope, well-being and success. This will help student face the world with a greater degree of maturity, stoic and become a wholesome person in the society.

It is more than just learning from books to lead a successful life. These activity-based liberal learning courses, which help students to expand their social roles later in life, are offered under two sequels namely **SEA** (Social Empowerment Activities) and **SAA** (Self Accomplishment Activities)

These SEA/SAA courses also focus on building positive mindset: adopting optimism, acceptance, resilience, gratitude, mindfulness, and integrity in your life will help student develop and maintain a positive mindset.

- (a) Each SEA/SAA activity is treated as one credit course
- (b) Student must select one activity per semester, through first 04 semesters, from the courses listed under SEA/ SAA, before commencement of the semester.
- (c) Students are required to earn minimum 04 credits under SEA/SAA, by completing minimum 02 credits through SEA and minimum 02 credits through SAA
- (d) To complete these activities student shall work outside the class work hours, during weekends, holidays, semester breaks, etc.,
- (e) If a student is not able to attend/ fulfil performance requirements, he/she shall be dropped from the course and shall have to enrol in the forthcoming semesters.

Monitoring SEA/SAA:

- (a) **Nodal units:** The Student Activity Centre (SAC) and Centre for Innovation Incubation Research and Entrepreneurship (C-i²RE) shall act as nodal units for activities listed under SEA/SAA.
- (b) During the semester period, the student has to acquire requisite knowledge, conduct fieldwork, acquire skills and propose unique solutions to the real-life problems

- (c) Knowledge Acquisition & Skilling:
- i. Students have to identify goals, acquire and accumulate knowledge on the chosen SEA/SAA activity
- ii. For the activities related to social awareness/issues/challenges that affect society, use the knowledge base, apply relevant skills to analyse the issue and propose unique possible solutions to the social issues/challenges. Practice to acquire necessary skills to seek new opportunities in their personal and professional life.
- iii. For the activities related to physical fitness, music, dance, fine arts, etc., guided practice sessions under supervision of expert/guru are to be planned and executed to acquire the benchmark skills to be demonstrated.
- (d) **Fieldwork:** Fieldwork is an essential component of learning for gaining real-life experiences. In addition to knowledge acquisition & skilling, student has to take up fieldwork on the chosen activity, as part of SEA/SAA course.
 - i. This student-driven Fieldwork allow students to interact with the 'real world'. It is an autonomous learning (self-learning) situation that students are more actively involved during the activity and develop a deeper understanding and develop a more positive attitude.
- ii. Fieldwork consists of three phases: preparation, the actual activity and feedback
- iii.As part of fieldwork, student has to interact with at least two eminent personalities/achievers/renowned persons/inspiring and great personalities related to the activity chosen.
- iv. Fieldwork will benefit students for any careers where they need to work with communities of people or which involves analysis of complex processes, especially social and cultural.
- v.Certain skills are required for effective fieldwork, which include observation, communication, interviewing, problem solving, documentation, and more
- vi. Other skills important for fieldwork practice include the ability to act in a crisis, to plan, set priorities, mobilize resources, and implement the plan effectively. These skills used in an integrated manner help students solve their problems and to develop one's own leadership style based on the need and culture of the place.
- vii. Eminent personalities/achievers/renowned persons/inspiring and great personalities <u>Eminent personalities/ Achievers / Renowned personalities:</u>
 - (a). In case of socially relevant problems/ activities of SEA/SAA: Eminent personalities/ achievers include district administrative officers, Eminent Social workers / NGOs, other inspiring and great personalities
 - (b). In case of Sports / Games and Cultural activities of SEA/SAA: Eminent coaches/ trainers/gurus, achievers who represented/won state level/national level/international level competitions, other inspiring and great personalities.
- viii. **For appointment to interact eminent personalities**: Student is expected to follow email etiquette rules and other appropriate polite communication etiquettes for getting appointment and time for interaction
 - ix.On fieldwork, student is expected to demonstrate solid time management, organisational and note taking skills during fieldwork
 - x. Ethics of fieldwork: Fieldwork is an educational process with commitment to positive values. All fieldwork should be planned and conducted in a way that is ethical,

- responsible and safe, for people, students, visited communities, if any, and all other stakeholders. Student is expected to maintain integrity and honesty. Avoid bias and deception. Protect the rights and well-being of people involved in fieldwork. The privacy, confidentiality and respect for the eminent people interacted should be maintained and their time, inputs & guidance are to be acknowledged
- xi. Student is expected to take care of health and Safety practices for fieldwork and travel
- xii. Student should remember that contrary to a *field trip or company visit*, **the emphasis in fieldwork is on acquiring skills**, and not on casually presenting theory and assessing.
- xiii. For the fieldwork, student shall go with a scientifically designed questionnaire and record the responses during interaction. These response sheets, along with geo-tagged pic of fieldwork (at the time of interaction & practise sessions, if any) shall be appended as annexures in the report to be submitted for course evaluation.
- xiv. **Feedback:** The learnings the student made out of interaction with eminent achievers shall be presented in the report as one of the chapters.
- During feedback, the central focus is on the elaboration of the students' experience during fieldwork. Therefore, the student should create an end product, such as a demonstration/presentation and report in which they demonstrate a link between their experiences during fieldwork and the underlying theoretical concepts and ideas.
- (e) **Demonstration / Presentation and Report**: Student after presentation/demonstration of his/her achievements/work shall get a certificate from the concerned nodal unit and submit a report, in the prescribed format, to the faculty counsellor for award of grade.
- (f) Flow process for completion of SEA/SAA course:
- xi. Faculty counsellor approval: In week (-1), in consultation with faculty counsellor, every student shall, identifies minimum of 4 activities listed under SEA/SAA activities, lists their priority and fills the same in ONLINE REGISTRATION FORM FOR SEA/SAA (received in their domain mail id) to Dean, Student Affairs. Dean, Student Affairs shall release the section wise allotment of SEA/SAA courses to students along with the details of supervising faculty of nodal centre. The allotment details shall be shared to the SEA/SAA coordinator and the student through domain mail id of the student
- xii. *Identification of goals and preparation of action plan:* In week (1), the respective faculty coordinator(s) of nodal centres shall address the students allotted to them to educate them on fixing goals, plan of action for completion and evaluation. In consultation with nodal centre, based on the workflow of the allotted activity, every student shall identify the goals (of activity) & eminent personalities (to be visited during the field trip) and prepare action plan (oriented workflow) for attaining the identified goals.
- xiii. *Field work:* Under the guidance of nodal centre, student shall complete the field work, based on the action plan, with the progress continuously monitored by the faculty counsellor and the nodal centre.
- xiv. *Demonstration/ Presentation:* After completion of field work, student shall demonstrate/present his achievements (knowledge/skills gained during the activity) at the nodal centre in the presence of external experts/senior practitioners of the activity. After successful demonstration/presentation, the nodal centre shall provide a certificate of completion indicating that the student has completed the activity in the stipulated time.

- xv. *Report writing:* After successful demonstration/presentation, student shall write a 2–3-page report and submit the same to the faculty counsellor. The report shall emphasize knowledge, skills and qualities acquired through the SEA/SAA activities. It shall also include the influence of these activities on enhancing confidence, positive change in life, decision making, transforming choices into desired actions/outcomes.
- (g) Assessment & Evaluation: There shall be only Continuous Internal Evaluation (CIE) for SEA/SAA. The SEA/SAA activities shall be evaluated at the end of the semester through respective evaluation processes, which shall include field work, presentation/ demonstration, submission of reports on the gathered data/information/ surveys, the details of which have been shown in below table. The department level SEA/SAA coordinator shall collect marks from the nodal centres and faculty counsellors, consolidate them, and submit the final grades to the examination branch, within one week of the last day of instruction. Evaluation of SEA/SAA activities shall be completed as and when students are ready, but not later than week (N+1).

The CIE for SEA/SAA is as follows:

Assessment	Maximum marks	Marks to be awarded by			
Goal setting, Planning & Knowledge Acquisition	20	Nodal centre			
Field work	40	Nodal centre			
Demonstration/Presentation	20	Nodal centre			
Report submission	20	Faculty counsellor			
Total	100	-			

Note:

- (f) <u>Presentation/ Demonstration</u>: It is mandatory for the student to appear for demonstration and (or) oral presentation oral presentation to qualify for course evaluation. In case of presentation, student should prepare PPT with informative slides including the geo tagged photos of his/her field trips/interactions as per the schedule notified by the nodal centre. In case of demonstration, student must take timeslot from the nodal centre and demonstrate the skills learnt/improved during the allotted timeslot.
 - The necessary arrangements for demonstration shall be looked after the student in consultation with the coordinator with due permission from Head of the department.
- (g) **Report:** Each student is required to submit a well-documented report on the chosen SEA/SAA topic as per the format specified by *department level SEA/SAA coordinator*.
- (h) <u>Anti-Plagiarism Check:</u> The SEA/SAA report should clear plagiarism check as per the Anti-Plagiarism policy of the institute.
- (i) Requirements for passing the course: A student is deemed to have passed SEA/SAA if he/she
 - a. successfully demonstrates/presents the skills attained at the end of course as per the schedule notified by the nodal centre, <u>and</u>
 - b. scores a minimum of 40 marks in the CIE of the course
- (j) <u>Supplementary examination:</u> If a student fails in SEA/SAA activity of a particular semester, he must complete the same by enrolling it in the next higher semesters.

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

- **CO1**: integrate the five dimensions of physical, emotional, cognitive, spiritual and social aspects in life for holistic development and demonstrate social sensitivity
- **CO2**: interact effectively through written, oral and nonverbal communication with external world in a professional, sensitive and culturally relevant manner
- CO3: analyse the issues related to social empowerment / self-accomplishment, demonstrate problem-solving skills, articulate solutions and demonstrate social sensitivity
- CO4: demonstrate the generic competencies in making a well-documented report and an effective oral presentation with PPTs portraying knowledge, skills, qualities acquired through fieldwork/practice sessions and social impact of the course learning

Text / Reference book(s):

For knowledge acquisition, students shall refer to textbooks and web resources relevant to the course selected. Plan for fieldwork/practice sessions in coordination with SEA/SAA coordinator

Course Articulation Matrix (CAM): U24VA309ZZ SEA-3/ SAA-3														
СО		PO	PSO	PSO										
	CO	1	2	3	4	5	6	7	8	9	10	11	1	2
CO1	U24VA309.1	-	-	-	-	-	2	2	2	2	2	2	1	1
CO2	U24VA309.2	-	-	-	-	-	2	2	2	2	2	2	1	1
CO3	U24VA309.3	-	-	-	-	-	2	2	2	2	2	2	1	1
CO4	U24VA309.4	-	I	ı	-	-	2	2	2	2	2	2	1	1
U24VA309		-	-	-	2	2	2	2	2	2	1	1		
	3 – HIGH, 2 – MEDIUM, 1 – LOW													

Course Code: U24VAXYY(SE/SA)ZZZ X represents semester; YY represents SEA/SAA course serial number in that semester; SE- represents SEA activity or SA - represents SAA activity; ZZZ represents activity code from SEA/SAA baskets

Ex: If A student selects a SEA/SAA course as	Ex: If A student selects a SEA/SAA course as
below:	below:
Semester: 1	Semester: 4
SEA/SAA course serial number: 09	SEA/SAA course serial number: 10
SEA/SAA category: SEA	SEA/SAA category: SAA
course number: 302	course number: 206
The course code will be U24VA109SE302	The course code will be U24VA410SA206

EXPERT TALK SERIES- 3									
Class: B.Tech. IV -Semester	ss: B.Tech. IV -Semester Branch: Common to all branches								
Course Code:	U24AE310	Credits:	1						
Hours/Week (L-T-P-O-E):	0-0-0-1-1	CIE:	100%						
Total Number of Teaching Hours:	-	ESE:	-						

This course will develop students' knowledge in /on...

LO1: 21st century skills needed for industry, current industry trends, challenges and innovations

LO2: latest technology in practice and applying knowledge to solve real-world problems

LO3: smart work, soft skills, professional etiquette, networking abilities

LO4: making a well-documented report portraying the knowledge, skills, qualities acquired and the impact of the learning

In the 21st century, for successful career, degree alone won't suffice. Competencies are much more important.

- (a) You need to be aware of the real-world problems, industry working style, need to be confident and smart and you also need to know the tricks of the trade.
- (b) Learning from industry experts with real-world examples, is important to enhance your educational experience.
- (c) Enhanced graduate employability benefits all stakeholders. To effectively enhance employability and the immediacy of adding value to company/project, it is important that you are aware of what you are learning and its use in the workplace. The cognitive abilities viz., remember, understand, recall, and application of knowledge and other skills acquired in higher education can be maximised if you are clear on the purpose of your developed competencies and how to apply them in a range of complex situations.
- (d) Graduate employability could be enhanced through fostering lifelong learning, the development of a range of employability-related competencies and increased confidence and capacity in "reflecting on and articulating these capabilities and attributes in a range of recruitment situations".

But how would you know all this without venturing into the industry?

- (e) The answer is Industry **Expert Talk Series (ETS)**. Through ETS, we invite industry experts in different fields to deliver talks and interact with students.
- (f) Through Industry expert talks students get to know so much more that textbooks don't explain.
- (g) Students have the opportunity to learn from professionals who have achieved success in their respective fields. These speakers often share their personal experiences, case studies, and anecdotes, providing students with real-world examples and perspectives that go beyond theoretical concepts.
- (h) Our competency-focussed curriculum URR24 is designed to contribute greatly to the nurturing and development of each of these facets among students through ETS courses
- (i) ETS helps students gain improved industry engagement for an easier transition into the workplace, broader career progression opportunities and personal development.
- (j) In URR24 curriculum, Expert talk series (ETS) is offered as a course under **ability enhancement category of courses**.

- (k) Through ETS sessions, students get the chance to interact with industry regularly which helps them focus on the needs and requirements of current industry. This will not only enthuse the students with new ideas but also motivate them to understand what kind of 21st century skills are needed in industry and how they need to groom themselves.
- (l) Through ETS sessions, another benefit is that students learn the importance of soft skills like communication, presentation, email etiquettes, corporate grooming and dressing styles. Conversing with successful people is the biggest motivation and students gain in more ways than one through ETS sessions.
- (m)ETS enhances your learning in many ways for global opportunities for your career.
- (n) All in all, learning from industry experts, is a wonderful opportunity for student to getting acquainted with professional etiquette, acquiring professional knowledge, and getting to know the internal workings of an organization.
- (o) Salient features of ETS are hereunder:
- (xii) ETS is offered from I semester to VI semester.
- (xiii) ETS, in any given semester, is treated as one credit course
- (xiv) Students are required to earn six credits (from I to VI semester)
- (xv) **Head, Centre for i**²**RE** shall be the **institute level ETS coordinator**
- (xvi) Under this course, a minimum of 10 expert talks shall be organized in **online/offline mode** by the parent department / Centre for i²RE.
- (xvii) Each expert talk shall be for a minimum duration of 45 minutes (*but not exceeding 90 minutes*) followed by **online quiz/test** for 10 marks (10 MCQs/FiBs; *duration: 10-15 mins*), on the contents covered in the expert talk.
- (xviii) **The Head C-i**²**RE** shall share the marks obtained by the students in each of the quizzes / tests to the respective **department ETS coordinators**.
 - (xix) Each student shall attend a minimum of 6 expert talks and attempt the corresponding quizzes/ tests conducted at the end of the talks.
 - (xx) **Report on ETS:** At the end of semester, the student shall submit a well-documented report on the acquired knowledge and skills, in the prescribed format, to the department ETS coordinator.
 - (xxi) **Evaluation:** There shall be only continuous Internal Evaluation (CIE) for ETS for a maximum of 100 marks
- (xxii) The department ETS coordinator shall, in coordination with institute level ETS coordinator, submit the final scores to the CoE in week (N+1).
- (p) The CIE for ETS is as follows:

Rubrics for evaluation of ETS

Quiz score (sum of best 6 quiz scores out of 10 quizzes. Each quiz evaluated for 10 marks)	60 marks
Attendance (out of 10 quizzes)	20 marks
Report in prescribed format (max 30% plagiarism)	20 marks
Total	100 marks

iii. **Attendance**: Maximum of 20 marks shall be awarded based on the attendance maintained by the student over a maximum of 10 lectures.

$$Marks \ for \ attendance = \frac{Number \ of \ expert \ talks \ attended \ fully}{10} * 20$$

iv. Supplementary Exam:

- (i) Student has to register for ETS supplementary examination if he/she scores less than 40 marks in CIE
- (j) The ETS supplementary examination shall be conducted by the parent department, in physical mode, for 100 marks (MCQs/FiBs; *duration: 2Hrs*) on the content covered in ETS lectures.
- (k)Department ETS coordinator shall, in coordination with the institute level ETS coordinator, conduct the supplementary exam, and submit scores to the CoE
- (l) Exam material/resources for supplementary: Recorded videos of ETS arranged for that semester, which shall be made available on ETS webpage of institute website

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

CO1: identify real-world problems, different career paths, industry requirements, emerging job

roles, business practices and exploit new opportunities by staying up-to-date with industry

knowledge, trends and technology

- CO2: identify what 21st century employability-related skills and professional etiquette are must in a range of recruitment situations, what skills are absent in him/her, and demonstrate skill improvement
- CO3: interact with experts, exhibit confidence, demonstrate improved communication and networking abilities potentially leading to mentorship opportunities, internships, or even future job prospects
- **CO4:** demonstrate the generic competencies in making a well-documented report portraying knowledge, skills, qualities acquired through ETS sessions and impact of the expert talks

Course	e Articulation M	Iatrix	(CAM)	:	U24AE310 EXPERT TALK SERIES - 3									
СО		PO	PO 2	PO 3										PSO 2
	1	1		3	4	3	0	/	0	9	10	11	1	
CO1	U24AE310.1	1	1	1	1	1	1	2	1	2	1	2	1	1
CO2	U24AE310.2	1	1	1	1	1	1	2	1	2	1	2	1	1
CO3	U24AE310.3	1	1	1	1	1	1	2	1	2	1	2	1	1
CO4	U24AE310.4	1	1	1	1	1	1	2	1	2	1	2	1	1
U	U24AE310 1 1				1	1	1	2	1	2	1	2	1	1
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

KAKATIYA INSTITUTE OF TECHNOLOGY & SCIENCE Opp: Yerragattu Gutta, Hasanparthy (Mandal), WARANGAL - 506 015, Telangana, INDIA.

कांकतीय प्रेद्योगिकी एवं विज्ञान संस्थान, वरंगल - ५०६ ०९५ तेलंगाना, भारत కాకతీయ సాంకేతిక విజ్ఞాన శాస్త్ర విద్యాలయం, కరంగత్ - గం౬ ంగగ తెలంగాణ, ఖారతదేశము

(An Autonomous Institute under Kakatiya University, Warangal)

S W (Approved by AICTE, New Delhi; Recognised by UGC under 2(f) & 12(B); Sponsored by EKASILA EDUCATION SOCIETY)

website: www.kitsw.ac.in

E-mail: principal@kitsw.ac.in

©:+91 9392055211. +91 7382564888

Semester -IV Syllabi

Sl.		6 6 1	0		Lectu	res / v	week		Credits
No.	Category	Course Code	Course Title	L	Т	P	0	Е	С
1	PCC	U24CE401	Fluid Mechanics	2	1	2	5	10	4
2	PCC	U24CE402	Concrete Technology	2	1	2	5	10	4
3	PCC	U24CE403	Theory of Structures	2	1	-	4	7	3
4	PCC	U24CE404	Engineering Hydrology	2	1	-	4	7	3
5	ESC	U24CE405	Artificial Intelligence & Machine Learning	2	1	2	5	10	4
6	VAC	U24VA406A	Quantitative Aptitude & Logical Reasoning	2	-	-	2	4	2
7	SEC	U24SE407	PSD-03 (Python programing)	•	-	2	2	4	1
8	ELC	U24EL408	Practicum-4	-	-	-	4	4	1
9	VAC	U24VA409	SEA - 4 / SAA - 4	•	-	-	2	2	1
10	AEC	U24AE410	Expert Talk Series-4	-	-	-	1	1	1
11	VAC*	U24CH411*	Environmental Studies*	2*	1*	-	2*	5*	-
12	PCC	U24CE412	Building Planning and Drawing Laboratory	ı	-	2	2	4	1
			Total:	12	5	10	36	63	25
Dea	n, AA): 1 w	r-sem Bridge C eek to 10 days: al learning (will							

*For Lateral Entry Students Only

	Value Added Courses (VAC)											
Sr. No.	Course Type	Course Code	Course Name	Semester	Credits							
1.	VAC 01	U24CY106	Sports & Yoga	I	1							
2	VAC 02	U24VA109	SEA - I / SAA-1	I	1							
3	VAC 03	U24VA206	Environmental Studies	П	-							
4	VAC 04	U24VA210	SEA-2 / SAA -2	П	1							
5	VAC 07	U24VA306B	Soft & Interpersonal Skills	III	1							
6	VAC 06	U24VA309	SEA-3 / SAA -3	III	1							
7	VAC 05	U24VA406A	QALR	IV	2							
8	VAC 08	U24VA409	SEA - 4 / SAA - 4	IV	1							

(OR)

Bridge Courses for exit:

Successful completion of two subjects (6-Credits) during 2-months internship at the institute OR Successful completion of two suitable skill based courses (external) to qualify for Certification

B. After Second Year: (UG Diploma in CE)

(i) The candidate should pass any two of the following additional courses (Diploma Level) during the 2-Months internship at institute

Exit Op	tion to Quali	fy UG Diploma i	n CE: Any Two (02) Courses during the	e 2 - N	Month	s inte	ernship)	
S. No.	Category	Course Code	Course Title	L	T	P	o	Е	С
1	PCC	U24CE413X	Transportation Engineering	2	-	2	-	4	3
2	PCC	U24CE414X	Environmental Engineering	2	-	2	-	4	3
3	PCC	U24CE415X	Design, detailing and drawings of structures	2	-	2	-	4	3
4	PCC	U24EC416X	Any other course approved by BoS Chair and Dean AA	2	-	2	-	4	3

(OR)

Any two suitable skill based courses to qualify for Diploma.

Exit	Exit Option to Qualify UG Diploma in CE: Any Two (02) Skill based Courses -:											
S. No.	Category	Course Code	Course Title	L	Т	P	О	E	С			
1	SEC	U24SE417X	Certificate Course in Civil Structure https://www.citdindia.org/images/p df/UPDATED-CAD-CAM-CAE- COURSES-DETAILS.pdf	•	-	6	-	6	3			
2	SEC	U24SE418X	3DS MAX&REVIT STRUCTURE https://www.citdindia.org/images/p df/UPDATED-CAD-CAM-CAE- COURSES-DETAILS.pdf	1	-	6	-	6	3			
3	SEC	U24SE419X	Highway Works Supervisor https://nac.edu.in/long-term-courses/	,	-	6	-	6	3			
4	SEC	U24SE420X	Training in DGPS http://www.geoinstituteoftechnolo gies.in/land-survey-courses-in- hyderabad	ı	-	6	-	6	3			
5	SEC	U24SE421X	Any other skill based course approved by BoS Chair and DeanAA	-	-	6	-	6	3			

B. Tech Honours with Research:

Students opting for B. Tech Honours with Research, shall undergo a 2-Month Mandatory Research Internship-I (5 Credits) at respective department during the summer vacation after

FLUID MECHANICS										
Class: B.Tech. IV-Semester Branch: Civil Engineering										
Course Code:	U24CE401	Credits:	4							
Hours/Week(L-T-P-O-E):	2-1-2-5-10	CIE:	60(%)							
Total Number of Teaching Hours: 60 Hrs ESE: 40(%)										

This course will develop students' knowledge in /on...

LO1: fluid properties and pressure measurement

LO2: stability of floating bodies, classify fluid flows and apply continuity equation

LO3: Bernoulli's equation and dimensional analysis

LO4: flow through pipes and analysis of laminar flow

UNIT-I 9 Hrs

Fluid fundamentals: Classifications of fluids, Fluid properties, Density, Specific weight, Specific gravity, Specific volume, Viscosity, Capillarity, Vapor pressure, Compressibility, Surface tension, Cohesion and adhesion

Fluid statics: Pascal's Law, Hydrostatic Law, Measurement of pressure, Atmospheric pressure, Gauge pressure, Absolute pressure, Principle of manometers, Piezometer, U- tube differential manometer, Inverted differential manometer

Self-Learning Topics (SLTs): density, specific weight, specific gravity, specific volume (Text1: topics 1.5,1.6), atmospheric pressure, gauge pressure, absolute pressure (Text1: 2.5)

UNIT-II 9 Hrs

Hydrostatic forces on surfaces: Hydrostatic forces on submerged plane and curved surfaces, Total pressure and center of pressure, Buoyancy and floatation, Metacenter, Stability of floating and submerged bodies

Fluid kinematics: Classification of fluid flow, Streamline, Path line, Streak line, Stream tube, Velocity potential and Stream function acceleration of fluid particle, Continuity equation in one-, two- and three-dimensional flows

Self-Learning Topics (SLTs): buoyancy and floatation (Text1: topics 4.1), streamline, path line, streak line, stream tube (Text1: topics 6.4)

UNIT-III 9 Hrs

Fluid dynamics: Forces causing motion, Bernoulli's equation, Applications of Bernoulli's theorem, Venturimeter, Orificemeter, Orifice, Mouthpiece, Notches and Pitot tube, Linear momentum equation, Application of linear momentum equation to pipe bends

Dimensional analysis: Dimension of various physical quantities and dimensional homogeneity, Dimensional analysis by Rayleigh's method and Buckingham's π- theorem, Dimensionless numbers and their consequences in fluid mechanics

Self-Learning Topics (SLTs): orifice, mouthpiece, notches, weirs and Pitot tube (Text1: topics 9.1,9.2,9.3), Dimension of various physical quantities (Text1: topics 17.1)

UNIT-IV 9 Hrs

Flow through pipes: Major and minor losses in a pipe, Expressions for head loss, Hydraulic gradient line, Total energy line, Pipes in series and parallel, Equivalent pipe, Power transmission through pipes **Laminar flow:** Characteristics of laminar flow, Reynold's experiment, Critical Reynold's number, Critical velocity, Steady laminar flow through a circular pipe, Hagen Poiseuille equation

Self-Learning Topics (SLTs): expressions for head loss (Text1: topics 11.5), Hagen Poiseuille equation (Text1: topics 13.3)

LABORATORY COMPONENT

- 1. Determination of coefficient of discharge for given orifice & mouthpiece
- 2. Determination of coefficient of discharge for given Venturimeter & Orificemeter
- 3. Determination of coefficient of discharge for triangular & rectangular Notch
- 4. Estimate coefficients of various head losses in pipes due to major losses
- 5. Verification of Bernoulli's theorem
- 6. Analyze the force exerted by a jet on flat, semi-circular and conical vanes
- 7. Estimate coefficients of various head losses in pipes due to minor losses (sudden enlargement, sudden contraction and bend)
- 8. Demonstration of Laminar and Turbulent flow using Reynold's apparatus
- 9. Study the efficiency and performance of Pelton Wheel under varying loads
- 10. Determination of efficiency of Francis turbine under various heads and flows
- 11. Study the performance characteristics of Centrifugal pump under various heads and discharges
- 12. Determination of performance characteristics of submersible pump under varying discharge and head

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

(based on cognitive skills acquired from theory component)

CO1: analyze various fluid properties and apply pressure measurement

CO2: analyze stability of floating bodies, classify fluid flows and apply continuity equation

CO3: apply Bernoulli's equation and dimensional analysis based on pressure and velocity

CO4: estimate the major and minor losses in pipes and summarize laminar flow

(based on psychomotor skills acquired from laboratory component)

CO5: calculate flow rates and discharge coefficients using flow measuring devices

CO6: analyze the energy losses in pipe system caused due to major and minor losses using Darcy-Weisbach Equation

CO7: examine theoretical fluid flow principles

CO8: interpret efficiency and performance curves for various hydraulic machines

Text book(s):

- 1.P. N. Modi and S. M. Seth, *Hydraulics and Fluid Mechanics Including Hydraulic Machines*, 18th ed., Standard Book House, Rajsons Publications Private Limited: 2011
- 2. A. K. Jain, Fluid Mechanics Including Hydraulic Machines, Khanna Publications, 2010.

Reference Book(s):

- 1. L. Victor Streeter and E. Benjamin Wylie, *Fluid Mechanics*, 1st Metric ed., McGraw Hill, Singapore: 1983.
- 2. M. Frank White, Fluid Mechanics, Special Indian ed., New Delhi Tata McGraw Hill,:2007.
- 3. K. Subramanya, Theory and Applications of Fluid Mechanics, Tata McGraw Hill.
- 4. C.S.P.Ojha, R. Berndtsson and P. N. Chadramouli, *Fluid Mechanics and Machinery*, Oxford University Press:2010
- 5. R.L. Daugherty, J.B. Franzini and E.J. Finnemore, *Fluid Mechanics with Engineering Applications*, International Student ed.Mc Graw Hill.

Laboratory manual:

1. "Fluid Mechanics Laboratory Manual", prepared by the faculty of Department of Civil Engineering.

Web and Video link(s):

- 1. https://archive.nptel.ac.in/courses/105/101/105101082/NPTELVideo Lecture on Fluid Mechanics by Dr. T.I. Eldho, IIT Bombay.
- 2.<u>https://archive.nptel.ac.in/courses/105/103/105103095/NPTELVideo</u> Lecture on Fluid Mechanics by Dr.Subhashisa Dutta, IIT Guwahati.
- 3.<u>https://archive.nptel.ac.in/courses/105/103/105103095/</u>NPTEL Video Lecture on Fluid Mechanics by Dr. N. Sahoo, IIT Guwahati.

Cours	e Articulation N	Matrix (CAM):		U24CE401- FLUID MECHANICS										
CO		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	
CO1	U24CE401.1	2	1	1	-	1	-	-	-	1	-	1	2	1	
CO2	U24CE401.2	2	1	2	1	2	1	-	-	2	1	1	2	1	
CO3	U24CE401.3	2	1	2	1	1	ı	ı	1	2	1	1	2	1	
CO4	U24CE401.4	2	1	1	1	1	1	ı	ı	1	1	1	2	1	
CO5	U24CE401.5	2	2	-	2	1	-	-	1	1	-	1	2	1	
CO6	U24CE401.6	2	2	-	2	-	-	-	1	1	-	1	2	1	
CO7	U24CE401.7	2	2	-	2	1	-	-	1	1	-	1	2	1	
CO8	CO8 U24CE401.8		2	-	2	1	-	-	1	1	1	1	2	1	
J	U24CE401 2 1.5 1.5 1.57 1.2 1 - 1 1.25 1 1 2 1														
	3-HIGH, 2-MEDIUM, 1-LOW														

CONCRETE TECHNOLOGY											
Class: B.Tech. IV-Semester	Class: B.Tech. IV-Semester Branch: Civil Engineering										
Course Code:	U24CE402	Credits:	4								
Hours/Week(L-T-P-O-E):	CIE:	60(%)									
Total Number of Teaching Hours: 60 Hrs ESE: 40(%)											

This course will develop students' knowledge in/on...

LO1: constituent materials and properties of fresh concrete

LO2: phases in production of concrete and properties of hardened concrete

LO3: special concretes and methods of repair in concrete

LO4: methods of mix proportioning of concrete

THEORY COMPONENT	
UNIT-I	9 Hrs

Concrete making materials: Concrete making materials, Cement, Oxide and chemical composition of OPC, Hydration of cement: Bogue's compounds, Heat of hydration, Water requirements for hydration, Properties of cement, Tests on cement, Aggregates-classification of aggregates based on size, shape and texture, Properties of aggregates, Grading, Tests on aggregates, Water quality for construction, Admixtures for concrete, IS codal provisions

Properties of Fresh Concrete: Workability, Factors affecting workability, Tests on Fresh Concrete, Measurement of workability - Slump, Compaction factor. Segregation and Bleeding. IS codal provisions

Self-Learning Topics (SLTs): Manufacturing of cement-wet and dry process (Text1: chapter 1, pg 5-9), types and grades of cement (Text1: chapter2, pg25-65)

UNIT-II 9 Hrs

Production of concrete: Phases in production of concrete-Batching, Mixing, Transporting and Placing, Compaction of concrete, types of compactions, Curing of concrete - Methods of curing concrete and Finishing

Properties of Hardened concrete: Strength of Concrete – Compression, Split tensile and Flexural, Factors affecting strength, Stress-strain Characteristics, Non-destructive techniques – Rebound hammer, Ultrasonic pulse velocity, IS codal provisions

Self-Learning Topics (SLTs): Effect of Maximum Size of Aggregate, Relation between Compressive and Tensile Strength- (Text 1: chapter7, pg 311-314)

UNIT-III 9 Hrs

Proportioning of concrete mixes: Concept of mix design, Variables influencing the concrete mix proportion and their effect on the concrete strength, Statistical quality control of concrete. IS codal provisions

Design Mixes: Design of concrete mixes using IS code method and ACI method

Self-Learning Topics (SLTs): Sampling and Acceptance Criteria (Text 1:chapter 11,pg 500,501), Mean, Variance and standard deviation(Text 1:chapter 11,pg 462-465)

UNIT-IV 9 Hrs

Concrete Durability: Impact of water-cement ratio, Permeability, Shrinkage and Creep, Carbonation, Sorptivity, Chloride attack, Corrosion, Acid attack, Causes of inadequate durability

Special concrete: Self compacting concrete (SCC), Geopolymer Fiber concrete, reinforced concrete, Vacuum concrete, Foam concrete

Self-Learning Topics (SLTs): Strength and durability relationship (Text1: chapter9, pg.349- 350), Alkali aggregate reaction Text 1, chapter 9, pg 394, 395)

LABORATORY COMPONENT

List of Experiments

- 1. Determination of fineness and Specific Gravity of Cement
- 2. Standard Consistency, Initial and Final Setting Times of cement.
- 3. Compressive Strength of Cement
- 4. Bulk Density, Specific gravity, Porosity and Void ratio of Fine Aggregate and Coarse Aggregate
- 5. Fineness Modulus of Fine and Coarse Aggregates
- 6. Bulking of Fine Aggregate
- 7. Workability of fresh concrete-slump and compaction factor
- 8. Compressive Strength of Concrete
- 9. Split tensile strength of concrete
- 10. Modulus of rupture of concrete
- 11. Carbonation of concrete
- 12. Non- Destructive Testing of Concrete

Course Learning Outcomes (COs):

Upon completion of this course, the student will be

(based on cognitive skills acquired from theory component)

CO1: investigate constituent materials and behavior of fresh concrete

CO2: appraise phases in production of concrete and evaluate hardened concrete

CO3: formulate different grades of concrete mixes

CO4: interpret concrete durability and special concrete

(based on psychomotor skills acquired from laboratory components)

CO5: examine laboratory test results of cement for construction

CO6: interpret laboratory test results of fine aggregate and coarse aggregate

CO7: evaluate the properties of fresh and hardened concrete

CO8: predict quality of concrete using nondestructive testing

Text book(s):

- 1. M. S. Shetty, A. K. Jain "Concrete Technology (Theory of Practice)", 8th ed., New Delhi: S. Chand Company, 2019.
- 2. M. L.Gambhir, "Concrete Technology", 5th ed., New Delhi: Tata McGraw-Hill, 2013

Reference Book(s):

- 1. A. M. Neville, "Properties of Concrete", 5th ed., New Delhi: Mc Graw Hill Publications, 2012.
 2. A.R. Santha Kumar "Concrete Technology", 1st ed., Oxford Publishers: 2010.
- 3. IS 4031 (Part 1-Part 5),1988): Methods of Physical Tests For Hydraulic Cement, , New Delhi: BIS
- 4. IS 383 (2016): Specification for Coarse and Fine Aggregates from natural sources for concrete
- 5. IS 10262 (2019): Guidelines for concrete mix design proportioning, , New Delhi : BIS
- 6. IS 516 (Part 1/Sec 1): 2021: Hardened Concrete Methods of Test Testing of Strength of Hardened Concrete Section 1 Compressive, Flexural and Split Tensile Strength (1st Revision)

Web and Video link(s):

- 1. https://archive.nptel.ac.in/courses/105/102/105102012/ NPTEL Video Lecture on Civil Engineering
- -Concrete Technology by Dr. B. Bhattacharjee, IIT Delhi
- <u>2. https://archive.nptel.ac.in/courses/105/106/105106206/ NPTEL</u> Video Lecture on Civil Engineering-Basic Construction Materials by Prof. Radhakrishna G. Pillai & Prof. Manu Santhanam, IIT Madras
- 3.https://archive.nptel.ac.in/courses/105/102/105102088/NPTEL Video Lecture on Civil Engineering Building materials and Construction by Dr. B. Bhattacharjee, IIT Delhi

Laboratory Manual Record Book (LMRB) for laboratory components:

1. Concrete technology laboratory manual record book (LMRB) prepared by CED, KITSW

Cours	se Articulation	Matr	ix (CAM):			U240	CE402	CON	CRET	E TEC	CHNC	DLOG	Y	
CO		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CE402.1	3	1	1	1	-	1	1	1	-	1	1	2	1
CO2	U24CE402.2	3	1	1	1	-	1	1	1	1	1	1	2	1
CO3	U24CE402.3	3	2	2	1	-	1	1	1	1	1	1	2	1
CO4	U24CE402.4	3	1	1	1	2	1	1	1	1	1	1	2	1
CO5	U24CE402.5	3	1	1	1	-	1	1	1	2	1	1	2	1
CO6	U24CE402.6	3	2	2	1	-	1	1	1	2	1	1	2	1
CO7	U24CE402.7	3	1	1	1	-	1	1	1	2	1	1	2	1
CO8	U24CE402.8	3	1	1	1	2	1	1	1	2	1	1	2	1
ı	U24CE402	3	1.25	1.25	1	2	1	1	1	1.57	1	1	2	1
	3-HIGH, 2-MEDIUM, 1-LOW													

THEORY OF STRUCTURES										
Class: B.Tech. IV -Semester Branch: Civil Engineering										
Course Code:	U24CE403	Credits:	3							
Hours/Week(L-T-P-O-E):	2-1-0-4-7	CIE:	60(%)							
Total Number of Teaching Hours: 36 Hrs ESE: 40(%)										

This course will develop students' knowledge in/on...

LO1: equilibrium equations for the analysis of indeterminate structures

LO2: bending moment and shear force diagrams for indeterminate structures

LO3: analysis of tall structures using approximate analysis for horizontal loads

LO4: internal forces in various structural members for moving loads

UNIT-I 9 Hrs

Slope deflection method for beams: Development of slope-deflection equations, Analysis of continuous beams with and without sinking of support, Construction of bending moment and shear force diagrams

Slope-deflection method for Frames: Rectangular portal frames with and without side sway for single bay single storey, Construction of bending moment and shear force diagrams

Self-Learning Topics (SLTs): Derivation for slope deflection equations (Text1: topics 6.1), Solved problems (Text1: prob 6.2, 6.4), Practice problems (Text1: Ch6- prob 2, 3, 5), Analysis of frames - Solved problems (Text1: prob 6.30, 6.55), Practice problems (Text1: Ch 6- prob 12, 18)

UNIT-II 9 Hrs

Moment distribution method for beams: Distribution and carry over factors, Analysis of continuous beams with and without sinking of support, Construction of bending moment and shear force diagrams

Moment distribution method for frames: Rectangular portal frames with and without side sway for single bay single storey, Construction of bending moment and shear force diagrams

Self-Learning Topics (SLTs): Relative stiffness (Text1: 5.2), Solved problems (Text1: prob5.3, 5.10), Practice problems (Text1: Ch5- prob 3, 6), Continuous beams with sinking of supports (Text1: topics 5.3), Solved problems(Text1: prob 5.34, 5.37), Analysis of frames (Text1: topic 5.4), Solved problems(Text1: prob 5.42, 5.52) Practice problems (Text1: Ch 5- prob 15, 18)

UNIT-III 9 Hrs

Kani's method: Analysis of statically indeterminate beams with and without sinking of supports

Approximate methods: Approximate analysis of frames using portal method and cantilever method

Self-Learning Topics (SLTs): Sign conventions (Text1:topic 7.1), Solved problems (Text1:prob 7.1, 7.5), Practice problems (Text1: Ch7- prob 1, 3), Analysis of frames (Text1: topics 5.16), Solved problems (Text1: prob 5.152, 5.156), Practice problems (Text1: Ch 5- prob 25)

UNIT-IV 9 Hrs

Moving Loads: Maximum bending moment and shear force diagrams for beams traversed by single point load, Pair of point loads, Uniformly distributed load shorter and longer than the span, Series of point loads, Absolute maximum bending moment and shear force, Equivalent uniformly distributed load

Influence Line Diagrams: Influence line diagram for support reaction, Bending moment and shear force for simply supported and over hanging beams, Influence line

diagrams for stresses in members for through type bridge trusses

Self-Learning Topics (SLTs): Influence line diagram for shear force (Text1: topics 11.1), Solved problems (Text1: prob 11.5, 11.9), Practice problems (Text1: Ch11- prob 2, 4), Absolute maximum bending moment (Text1: topics 11.5), Solved problems (Text1: prob 11.23)

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

CO1: examine equilibrium equations for indeterminate structures

CO2: develop net bending moment and shear force diagrams for indeterminate structures

CO3: analyze tall structures using approximate analysis for horizontal loads

CO4: estimate internal forces in structural members for moving loads

Text book(s):

- 1. S. Ramamrutham and R. Narayan "Theory of Structures", 11th ed., New Delhi, Dhanpat Rai publications, 2019.
- 2. B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain "Theory of Structures", 13th ed., New Delhi, Laxmi Publications, 2005.

Reference Book(s):

- 1. C. S. Reddy, "Basic Structural Analysis", 19th ed., New Delhi, Tata McGraw Hill Education Pvt., Ltd., 2017.
- 2. C. K. Wang "Indeterminate Structural Analysis", McGraw Hill Book Co.. 2017.
- 3. Mikus Cirulis, Phil Wicks "Structural Analysis", ICE Publishing, 2014.

Web and Video link(s):

- 1. https://onlinecourses.nptel.ac.in/noc25_ce54/preview NPTEL Video Lecture on "Structural Analysis-I" by Prof. Amit Shaw, IIT Kharagpur
- 2. https://nptel.ac.in/courses/105105109 NPTEL Video Lecture on "Structural Analysis II" by Prof. L.S. Ramachandra, Prof. Sudhir Kumar Barai, IIT Kharagpur.

Co	Course Articulation Matrix (CAM): U24CE403 THEORY OF STRUCTURES													
	СО	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	
CO1	CO1 U24CE403.1 2 2 1 1 1 1 1 1 1 1 1													
CO2	U24CE403.2	2	2		1	1	1	1	1	1		1	1	1
CO3	U24CE403.3	2	2		1	1	1	1	1	1		1	1	1
CO4	CO4 U24CE403.4 2 2 1 1 1 1 1 1 1 1 1													
J	U24CE403 2 2 1 1 1 1 1 1 1 1 1													
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

U24CE404 ENGINEERING HYDROLOGY											
Class: B.Tech. IV -Semester	Class: B.Tech. IV -Semester Branch: Civil Engineering										
Course Code:	U24CE404	Credits:	3								
Hours/Week (L-T-P-O-E):	CIE:	60 %									
Total Number of Teaching Hours: 36 Hrs ESE: 40 %											

This course will develop students' knowledge in /on...

LO1: hydrologic cycle and analysis of rainfall data

LO2: evaporation, Infiltration and runoff

LO3: characteristics of hydrograph and ground water hydraulics

LO4: principles of flood routing in reservoirs

UNIT-I 9 Hrs

Elements of Hydrology: Introduction, Hydrologic cycle, Water budgeting, Water potential in India

Precipitation and its Measurement: Recording and Non-recording type of rain gauges - errors in measurement - Location of rain gauges. Analysis of rain falls data by mass curves, Hyetograph, Intensity duration analysis, Estimation of missing precipitation data, Consistency test of data by double mass curve technique, Probable maximum precipitation

Self-Learning Topics (SLTs): Types of Precipitation (Text1: 2.8), errors in measurement (Text1:5.6)

UNIT-II 9 Hrs

Evaporation and Evapotranspiration: Factors affecting the processes and their estimation, Pan evaporation, Blaney Criddle, Hargreaves, Penmann and Lysimeter methods, Methods of reducing evaporation from reservoirs

Infiltration and Runoff: Factors affecting Infiltration, Measurements of infiltration, Infiltration indices, Factors affecting runoff, Estimation of runoff from rainfall, Flow duration curve and Mass curve and their uses

Self-Learning Topics (SLTs): Factors affecting the processes of evaporation and evapotranspiration (Text1: 7.3,7.8.1), Factors affecting Infiltration (Text1:8.2), Factors affecting runoff (Text1:10.3)

UNIT-III 9 Hrs

Hydrograph analysis: Characteristics of hydrograph, separation of base flow, Unit hydrograph, S-Curve hydrograph, Synthetic unit hydrograph, and Dimensionless unit hydrograph

Groundwater: Types of Aquifers-Unconfined and Confined Aquifers, Aquifer parameters, Well Hydraulics, Recuperation test for yield of open well

Self-Learning Topics (SLTs): characteristics of hydrograph (Text1:11.2), Dimensionless unit hydrograph (Text1:11.13), Aquifer parameters (Text1:9.3)

UNIT-IV 9 Hrs

Floods: Reservoir routing, Establishing Storage - Discharge relationship, I.S.D method, channel routing-Muskingum Method, determination of Muskingum parameters k and x

Design Flood: Methods of estimation of design flood empirical formulae, Rational method, Frequency analysis, Gumbel's distribution and Unit Hydrograph method

Self-Learning Topics (SLTs): Reservoir routing (Text1:13.1,13.2), Methods of estimation of design flood empirical formulae (Text1:14.4)

(based on cognitive skills acquired from theory component)

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

CO1: describe hydrologic cycle and analyze rainfall data.

CO2: estimate evaporation, infiltration and runoff.

CO3: examine characteristics of hydrograph and compute ground water hydraulics.

CO4: apply principles flood routing in reservoirs.

Text book(s):

- 1. P. Jayarami Reddy," A Textbook of Hydrology", 4th ed., New Delhi, Laxmi Publishers, 2017.
- 2. K. Subramanya, "Engineering Hydrology", 3rd ed., New Delhi, Tata Mc Graw Hill Book Co., 2011.

Reference Book(s):

- 1. R. K. Linsley, M. A. Kohler and J. L. Paulus, "Hydrology for Engineers", 3rd ed., New Delhi, Mc Graw Hill Book Co., 1982.
- 2. R. S. Varshney, "Engineering Hydrology", 4th ed., Roorkee, Nemchand Bros., 2012.
- 3. H. M. Raghunath," *Hydrology*", 3rd ed., New Delhi, New Age International Publishers, 2015.

Web and Video link(s):

i. https://archive.nptel.ac.in/courses/105/103/105103213/ Lecture on Engineering Hydrology by Prof. Sreeja Pekkat, IIT Guwahati

Cours	Course Articulation Matrix (CAM): U18CE404 ENGINEERING HYDROLOGY													
CO	CO PO PO 1 2				PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CE404.1	2	1	1	-	1	-	-	-	1	-	1	2	-
CO2	U24CE404.2	2	1	2	1	2	1	-	-	2	1	1	2	-
CO3	U24CE404.3	2	1	2	1	1	-	1	-	2	1	1	2	-
CO4	CO4 U24CE404.4 2 1 1 1 1 1 1 - 1 1 - 2 -													
J	U24CE404 2 1 1.5 1 1.25 1 1 - 1.5 1 - 2 -													
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

KITSW - URR24 B. Tech CE Curriculum Page 168 of 197

ARTIFICIAL INTELLIGENCE & MACHINE LEARNING										
Class: B.Tech. VI -Semester Branch: Common to All										
Course Code:	U24CE405	Credits:	4							
Hours/Week (L-T-P-O-E): 2-1-2-5-10 CIE: 60%										
Total Number of Teaching Hours: 60 Hrs ESE: 40%										

This course will develop students' knowledge in /on...

LO1: artificial intelligence application, state space searching, heuristic searching

LO2: game playing, knowledge representation, reasoning

LO3: supervised learning, association learning, statistical learning

LO4: artificial neural network, hidden Markov model, clustering

UNIT-I 9 Hrs

Introduction to AI: Definitions of AI, AI problems, Timelines of AI, Domains of AI, Applications of AI **State Space Searching:** Production system for Water-Jug Problem and Travelling Salesman Problem, State space representation, Tic-Tac-Toe as a State Space

Heuristic Search Techniques: Generate-and-Test, Hill Climbing, Depth First Search, Breadth First Search, Greedy Method, Best First Search Algorithm, A* Algorithm

Self-Learning Topics (SLTs): Foundations of AI (Text1: Chapter 1.2), Risks and Benefits of AI (Text1: Chapter 1.5), Concept of Rationality (Text1: Chapter 2.2), Diagrams and pseudo code related to Structure of Agents (Text1: Chapter 2.4)

UNIT-II 9 Hrs

Game playing: Constraints Satisfaction, Means-ends Analysis, MINIMAX Procedure, Alpha-Beta Pruning **Knowledge Representation**: Types of Knowledge, Approaches to Knowledge Representation, First-order Logic, Basic Predicate Representations, Conversion of WFF to Clause Form, Resolution

Reasoning: Types of Reasoning, non-monotonic reasoning, Truth maintenance systems, Reasoning with fuzzy logic, Rule-based reasoning, Diagnosis reasoning

Self-Learning Topics (SLTs): Online search problems (Text1: Chapter 4.5.1), Inference in CSPs (Text1: Chapter 5.2), Examples on Backtracking for CSPs (Text1: Chapter 5.3), Optimal decisions in multiplayer games (Text1: Chapter 6.2.2)

UNIT-III 9 Hrs

Supervised Learning: Types of Learning, Why Machine Learning, Types of Problems in Machine Learning, History of Machine Learning, Aspects of Inputs to Training, Machine Learning Applications

Association Learning: Basics of Association, Apriori Algorithm, FP Growth Algorithm, Case Studies Customer Sequence

Statistical Learning: Linear Classifiers, Quadratic Classifiers, Decision Trees with C4.5 algorithm, Random Forest, Bayesian Networks, Support Vector Machines

Self-Learning Topics (SLTs): Logical connectives (Text1: Chapter 7.4.1), Inference and proofs (Text1: Chapter 7.5.1), Compare Propositional and first order inference (Text1: Chapter 9.1), Example proofs of resolution (Text1: Chapter 9.5.3)

UNIT-IV 9 Hrs

Artificial Neural Nets: ANN Basics, Learning Process, Perceptron, Multilayer Perceptron, Error Backpropagation Algorithm

Hidden Markov Models: Stochastic Processes, Markov Process, Hidden Markov Models

Clustering: k-Means clustering, Fuzzy clustering, Hierarchical clustering, Cluster similarity, Case study on clustering Cancerous cells

Self-Learning Topics (SLTs): Summarizing uncertainty(Text1: Chapter 12.1.1), Case study: Car insurance(Text1: Chapter 13.2.4), A simple one-dimensional example of Kalman filter (Text1: Chapter 14.4.2), Robotics -Applications domains (Text1: Chapter 26.10)

LABORATORY COMPONENT

List of Experiments

Experiment 1: State Space Search Techniques

- 1. Implement Water Jug Problem using State Space Search
- 2. Solve Tic-Tac-Toe using State Space Representation
- 3. Implement Travelling Salesman Problem using State Space Representation

Experiment 2: Uninformed Search Algorithms

- 1. Implement Breadth First Search (BFS)
- 2. Implement Depth First Search (DFS)
- 3. Implement Generate and Test Algorithm

Experiment 3: Heuristic Search Algorithms

- 1. Implement Hill Climbing Algorithm
- 2. Implement Greedy Best First Search
- 3. Implement A* Search Algorithm

Experiment 4: Game Playing & Problem Solving

- 1. Implement MINIMAX Algorithm for Tic-Tac-Toe
- 2. Implement Alpha-Beta Pruning
- 3. Implement Means-Ends Analysis

Experiment 5: Constraint Satisfaction and Knowledge Representation

- 1. Solve N-Queens Problem using Backtracking
- 2. Represent Knowledge using Propositional Logic
- 3. Convert First Order Logic (WFF) to Clause Form

Experiment 6: Resolution and Reasoning

- 1. Implement Resolution for Predicate Logic
- 2. Implement Forward Chaining Inference
- 3. Implement Rule-Based Reasoning System

Experiment 7: Supervised Learning - Basics

- 1. Implement a Simple Linear Regression
- 2. Implement a Decision Tree using ID3 or C4.5
- 3. Implement a k-Nearest Neighbors Classifier

Experiment 8: Association Learning

- 1. Implement Apriori Algorithm
- 2. Implement FP-Growth Algorithm
- 3. Analyze a Customer Sequence Dataset using Association Rules

Experiment 9: Statistical Learning

- 1. Implement Naïve Bayes Classifier
- 2. Implement Support Vector Machine (SVM)
- 3. Implement Random Forest Classifier

Experiment 10: Neural Networks

- 1. Implement a Single-Layer Perceptron
- 2. Implement a Multilayer Perceptron using Backpropagation
- 3. Use an ANN for Digit Recognition (MNIST subset)

Experiment 11: Hidden Markov Models

- 1. Implement Markov Chain Simulation
- 2. Implement Forward Algorithm in HMM
- 3. Implement Viterbi Algorithm for Sequence Prediction

Experiment 12: Clustering Techniques

- 1. Implement k-Means Clustering
- 2. Implement Fuzzy c-Means Clustering
- 3. Perform Hierarchical Clustering on Cancer Dataset

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

(based on cognitive skills acquired from theory component)

CO1: apply AI problem solving techniques for various engineering problems

CO2: analyze efficiency of game playing constraint satisfying and first order logic techniques

CO3: apply association learning and statistical learning approaches in developing machine learning applications

CO4: apply artificial neural networks and hidden Markov model for decision-making

(based on psychomotor skills acquired from laboratory component)

CO5: implement state space search algorithms and heuristic techniques for solving classical AI problems

CO6: implement game-playing strategies using MINIMAX and Alpha-Beta pruning and constraint satisfaction

CO7: implement ML algorithms including decision trees, support vector machines, neural networks for supervised learning

CO8: implement advanced models like Hidden Markov Models, clustering techniques for un supervised learning

Textbook(s):

1. V. Chandra and A. Hareendran, *Artificial Intelligence and Machine Learning*, 1st ed. New Delhi: PHI Learning, 2014.

Reference Book(s):

- 1. Stuart Russell and Peter Norvig, *Artificial Intelligence: A Modern Approach*, 4th ed., New Delhi: Prentice Hall Series in AI, 2022
- 2. T. M. Mitchell, Machine Learning, 1st ed., New York: McGraw-Hill, 1997

Web and Video link(s):

- 1. https://onlinecourses.nptel.ac.in/noc25_cs07/preview, NPTEL Video Lecture on Artificial Intelligence: Knowledge Representation And Reasoning by Prof. Deepak Khemani, IIT Madras.
- 2. https://onlinecourses.nptel.ac.in/noc20_cs49/preview

Course (CAM)		ticulation Matrix U24CE404 Artificial Intelligence & Machine Learning								g					
	СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	U24CE404.1	2	2	2	2	1	1	-	1	1	1	-	2	2	1
CO2	U24CE404.2	2	3	3	2	1	1	-	1	1	1	-	2	3	1
CO3	U24CE404.3	2	3	3	2	1	1	-	1	1	1	-	2	3	1
CO4	U24CE404.4	2	2	2	3	1	1	-	1	1	1	-	2	3	1
CO5	U24CE404.5	2	2	2	2	1	1	-	1	1	1	-	2	2	1
CO6	U24CE404.6	2	3	3	2	1	1	-	1	1	1	-	2	3	1
CO7	U24CE404.7	2	3	3	2	1	1	-	1	1	1	-	2	3	1
CO8	U24CE404.8	2	2	2	3	1	1	-	1	1	1	-	2	3	1
U24CE404 2 2.5 2.5 2.25 1 1 - 1						1	1	1	-	2	2.75	1			
	3 - HIGH, 2 - MEDIUM, 1 - LOW														

OUANTITATIVE APTITUDE AND LOGICAL REASONING

Class: B.Tech. III -Semester		Branch: Common to al	ll Branches
Course Code:	U24VA406A	Credits:	2
Hours/Week (L-T-P-O-E):	2-0-0-2-4	CIE	60 %
Total Number of Teaching Hours:	24 Hrs	ESE	40 %

Course Learning Objectives (LOs):

This course will develop students' knowledge in /on...

LO1: quantitative aptitude & problem-solving skills

LO2: computation of abstract quantitative information

LO3: application of basic mathematics skills & critical thinking to draw conclusions

LO4: evaluation of validity & possible biases in arguments presented in authentic contexts

UNIT-I 6 Hrs

Quantitative Aptitude-I: Number system, Averages, Percentages, Ratios & proportions, Time, Speed & distance, Time and work

UNIT-II 6 Hrs

Quantitative Aptitude-II: Simple interest, Compound interest, Profit & loss, Ages, Permutations & Combinations, Probability

UNIT-III 6 Hrs

Logical Reasoning-I: Series completion, Analogy, Coding and decoding, Blood relations, Number, Ranking & Time sequence test, Linear & Circular arrangements

UNIT-IV 6 Hrs

Logical Reasoning-II: Data sufficiency, Logical Venn diagram, Syllogisms, Statement & Arguments, Statement & Assumptions, Direction sense test

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

- **CO1**: apply arithmetic concepts such as averages, percentages, ratios, and time-based calculations to solve real-life quantitative problems
- CO2: analyze and solve problems involving financial, arithmetic and probability using structured quantitative methods
- CO3: identify patterns and apply deductive reasoning to solve series, coding-decoding, and arrangement-based logical problems
- **CO4**: evaluate logical statements, assess validity, and draw conclusions using tools like syllogisms, Venn diagrams, and argument analysis

Note: Students should go through the QALR course supplementary material made available on online learning platform

- Contents covered in class shall be practiced through the material available on the online learning platform. At home practice problems and practice tests shall be made available on the online learning platform
- Tutorial classes shall be conducted on the online learning platform and hence students shall attend the tutorial classes with laptop/tab
- All assessments shall be conducted through online learning platform

Textbook(s):

- 1. **R S Agarwal**, *Quantitative Aptitude for Competitive Examinations*, 3rd ed., New Delhi: S. Chand Publications, 2019. (*Chapters* 1,6,7,8,10,11,12,15,17,21,22,30,31 for Unit I & II)
- 2. **R S Agarwal**, *A Modern Approach to Verbal and Non-Verbal Reasoning*, 3rd ed., New Delhi: S. Chand Publications, 2019. (*Chapters Section I: 1,3,4,5,6,8,16, Section II: 2,3 for Unit III & IV*)

Reference Book(s):

- 1. **Dinesh Khattar**, *Quantitative Aptitude for Competitive Examinations*, 1st ed., New Delhi: Pearson India, 2019.
- 2. **Nishit K Sinha**, *Reasoning for Competitive Examinations*, 1 st ed., New Delhi: Pearson India, 2019.
- 3. **R. N. Thakur**, *General Intelligence and Reasoning*, 1st ed., New Delhi: McGraw Hill Education, 2017.

Course	Articulation Ma	atrix (CAM):		U24VA406A QUANTITATIVE APTITUDE AND LOGICAL REASONING									L
	СО	PO 1	PO 2	PO 3						PSO 2				
CO1	U24VA406A .1	1	2	-	1	-	-	-	-	-	-	1	1	-
CO2	U24VA406A.2	1	2	-	1	-	-	-	-	-	-	1	1	-
CO3	U24VA406A.3	-	1	-	2	-	2	-	-	-	-	1	1	-
CO4	U24VA406A.4	-	1	-	- 2 - 2 1 1 -									
U24	VA406A	1 1.5 - 1.5 - 2 1 1 -												
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

KITSW - URR24 B. Tech CE Curriculum Page 173 of 197

PRACTICUM - 4								
Class: B.Tech. IV-Semester Branch: Common to all branches								
Course Code:	U24EL408	Credits:	1					
Hours/Week (L-T-P-O-E):	0-0-0-4-4	CIE:	100%					
Total Number of Teaching Hours:	-	ESE:	-					

This course will develop students' knowledge in /on...

LO1: literature review and identifying research gaps

LO2: implementing a project independently by applying knowledge to practice

LO3: preparing well-documented report and informative PPT

LO4: effective technical presentation and creating video pitch

Practicum is an independent project carried out by the student during the course period, under the supervision of allotted course faculty. It helps to reinforce the students' theoretical knowledge and develop their ability to apply this knowledge to the solution of practical problems. Practicums also prepare them for their MINI and MAJOR PROJECTs and for independent work in their chosen field that promotes creative abilities. Besides they provide Higher Order Cognitive Abilities (HOCAs).

- (i). Practicum is a mandatory semester project work.
- (ii). Practicum is offered as a one credit course. Student has to earn 4 credits (one in each semester from I to IV semesters)
- (iii). Allotment of Practicum topics for students:
 - o **Practicum matrix:** In week (-1), the class teacher, in consultation with HoD, shall prepare the practicum matrix of the section. The practicum matrix is the allotment of group of students to the different course faculty of the section, as shown below.

Course	ourse U24CE401		U24CE403	U24CE404	U24CE405	U24VA406
	U24CE401	U24CE402	U24CE403	U24CE4U4	U24CE405	A
	B24XX001	B24XX011	B24XX021	B24XX031	B24XX041	B24XX051
	B24XX002	B24XX012	B24XX022	B24XX032	B24XX042	B24XX052
Chudonto	B24XX003	B24XX013	B24XX023	B24XX033	B24XX043	B24XX053
Students allotted	B24XX004	B24XX014	B24XX024	B24XX034	B24XX044	B24XX054
to	B24XX005	B24XX015	B24XX025	B24XX035	B24XX045	B24XX055
different	B24XX006	B24XX016	B24XX026	B24XX036	B24XX046	B24XX056
courses	B24XX007	B24XX017	B24XX027	B24XX037	B24XX047	B24XX057
courses	B24XX008	B24XX018	B24XX028	B24XX038	B24XX048	B24XX058
	B24XX009	B24XX019	B24XX029	B24XX039	B24XX049	B24XX059
	B24XX010	B24XX020	B24XX030	B24XX040	B24XX050	B24XX060

- o In week (-1), the class teacher of a section shall collect 10-12 topics for practicum from each of the course teachers of that section.
- The class teacher, in consultation with HoD shall allot the practicum topics to the students of that section in the following format.

KITSW - URR24 B. Tech CE Curriculum Page 174 of 197

CIRCULAR

Allotment of Practicum topics to students

Section :

S.No.	Roll number of the	Practicum topic	Practicum under the	Course
5.100.	student	allotted	course	faculty

Note:

- 1. The students should meet immediately the allotted course faculty for practicum and start working on the practicum with the guidance of course faculty.
- 2. To complete the Practicum, the student shall work in laboratories under supervision of allotted course faculty, in the allotted hours in the classwork timetable and also outside the class work hours during weekdays.
- 3. The course faculty are advised to guide the allotted students for practicum during the semester course work.

(Signature of class teacher)

- (iv). To complete the practicum, the student shall work in laboratories under supervision of allotted course faculty, in the allotted hours in the classwork timetable and outside the class work hours during weekdays.
- (v). There shall be only continuous Internal Evaluation (CIE) for practicum for a maximum of 100 marks.
- (vi). The practicum course faculty shall evaluate & submit the final marks of the allotted students in week (N+1) to the respective class teacher.
- (vii). The class teacher shall collect the final marks of practicum of the students allotted to each course teacher and submit them to the CoE.
- (viii). Course faculty shall follow his/her own rubrics for practicum evaluation. Focus shall be on knowledge, skills & qualities acquired by the student during the practicum course
 - (ix). A sample rubrics for assessment and evaluation of practicum is as follows:

Literature survey & Identification of research gaps	10 marks
Working model / process / software package / system developed	30 marks
Report writing (subjected to max of 30% plagiarism)	20 marks
Oral presentation with PPT and viva-voce	20 marks
Video pitch	20 marks
Total	100 marks

Note: It is mandatory for the student to appear for oral presentation and viva-voce to qualify for course evaluation of Practicum.

- (a) **Practicum Topic**: Each student shall be allotted a topic for practicum by the course faculty member attached to him/her. Interested students can work on their own title for practicum, but with due approval from course faculty.
- (b) **Working Model**: Each student is required to develop a prototype / process / system/simulation model on the given practicum topic and demonstrate/present, during the allotted time, before the course teacher.
- (c) **Report:** Each student is required to submit a well-documented report on the allotted practicum topic as per the format specified by the course faculty. The student shall include

- answers to the following questions in the report and ppt presentation.
- o What was the objective of the practicum assigned?
- o What are the main responsibilities and tasks for practicum?
- o What knowledge and skills from the coursework are applied in the practicum?
- o What new knowledge and skills are acquired during the practicum?
- o In what ways, can the practicum be helpful for the professional career?
- o What gaps are identified in your practicum work?
- What improvements or changes you suggest for addressing the identified gaps for future work?
- (d) **Anti-Plagiarism Check:** The practicum report should clear plagiarism check as per the Anti-Plagiarism policy of the institute
- (e) **Presentation:** Each student should prepare PPT with informative slides and make an effective oral presentation before the course teacher as per the schedule notified by the department
- (f) **Video Pitch:** Each student should create a pitch video, which is a video presentation on his / her Practicum. Video pitch should be no longer than 5 minutes by keeping the pitch concise and to the point, which shall also include evidence like videos & pics at the time of implementing the practicum and also key points about his / her business idea / plan (*if any*) and social impact
- (g) The student has to register for the Practicum as a supplementary examination in the following cases:
- vii) he/she is absent for oral presentation and viva-voce
- viii) he/she fails to submit the report in prescribed format
- ix) he/she fails to fulfill the requirements of Practicum evaluation as per specified guidelines

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

CO1: synthesize literature survey, identify research gaps and define objective & scope of practicum problem

CO2: apply knowledge to design & conduct experiments, utilize modern tools for solution of practicum problem and develop working model/ process/ system

CO3: demonstrate the generic competencies in making a well-documented report portraying knowledge, skills, qualities acquired through practicum

CO4: create a video pitch on practicum and make an effective oral presentation using PPTs

Course	Course Articulation Matrix (CAM): U24EL408 PRACTICUM-4													
	СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PSO 2
CO1	U24EL408.1	2	2	2	2	2	2	2	2	2	2	2	2	2
CO2	U24EL408.2	2	2	2	2	2	2	2	2	2	2	2	2	2
CO3	U24EL408.3	2	2	2	2	2	2	2	2	2	2	2	2	2
CO4	U24EL408.4	2	2	2	2	2	2	2	2	2	2	2	2	2
U	U24EL408 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								2					
	3 – HIGH, 2 – MEDIUM, 1 - LOW													

SOCIAL EMPOWERMENT ACTIVITY -4 / SELF ACCOMPLISHMENT ACTIVITY - 4 (SEA -4/SAA-4)

Class: B.Tech. IV-Semesters	Branch: Common to all branches						
Course Code:	U24VA409	Credits:	1				
Hours/Week (L-T-P-O-E):	0-0-0-2-2	CIE:	100%				
Total Number of Teaching Hours:	-	ESE:	-				

Course Learning Objectives (LOs):

This course will develop students' knowledge in /on...

- **LO1: holistic development** through activity-based learning to gain real-life experience which effectively help individuals deal appropriately with problems/challenges
- LO2: positive mindset by actively adopting optimism, acceptance, resilience, gratitude, mindfulness, and integrity and handling rejection in life
- LO3: skills for effective fieldwork practice, which include ethics, observation, communication, interviewing, problem solving, time management, organisation and documentation
- **LO4:** making a well-documented report and an effective oral presentation through PPTs portraying knowledge, skills, qualities acquired and social impact of the activity

Activity Based Liberal Learning about Life, Literature and Culture (ABLL@LLC) is introduced for building **generic competencies** in students. ABLL is aimed at all dimensional holistic growth of the learner. The holistic development includes the **physical**, **emotional**, **cognitive**, **spiritual and social aspects**. This is an area which opens the decision-making process, helps the student to develop creativity, an analytical mind, and builds resilience, confidence, hope, well-being and success. This will help student face the world with a greater degree of maturity, stoic and become a wholesome person in the society.

It is more than just learning from books to lead a successful life. These activity-based liberal learning courses, which help students to expand their social roles later in life, are offered under two sequels namely **SEA** (Social Empowerment Activities) and **SAA** (Self Accomplishment Activities)

These SEA/SAA courses also focus on building positive mindset: adopting optimism, acceptance, resilience, gratitude, mindfulness, and integrity in your life will help student develop and maintain a positive mindset.

- (f) Each SEA/SAA activity is treated as one credit course
- (g) Student must select one activity per semester, through first 04 semesters, from the courses listed under SEA/ SAA, before commencement of the semester.
- (h) Students are required to earn minimum 04 credits under SEA/SAA, by completing minimum 02 credits through SEA and minimum 02 credits through SAA
- (i) To complete these activities student shall work outside the class work hours, during weekends, holidays, semester breaks, etc.,
- (j) If a student is not able to attend/ fulfil performance requirements, he/she shall be dropped from the course and shall have to enrol in the forthcoming semesters.

Monitoring SEA/SAA:

- (h) **Nodal units:** The Student Activity Centre (SAC) and Centre for Innovation Incubation Research and Entrepreneurship (C-i²RE) shall act as nodal units for activities listed under SEA/SAA.
- (i) During the semester period, the student has to acquire requisite knowledge, conduct fieldwork, acquire skills and propose unique solutions to the real-life problems
- (j) Knowledge Acquisition & Skilling:

- iv. Students have to identify goals, acquire and accumulate knowledge on the chosen SEA/SAA activity
- v. For the activities related to social awareness/issues/challenges that affect society, use the knowledge base, apply relevant skills to analyse the issue and propose unique possible solutions to the social issues/challenges. Practice to acquire necessary skills to seek new opportunities in their personal and professional life.
- vi. For the activities related to physical fitness, music, dance, fine arts, etc., guided practice sessions under supervision of expert/guru are to be planned and executed to acquire the benchmark skills to be demonstrated.
- (k) **Fieldwork:** Fieldwork is an essential component of learning for gaining real-life experiences. In addition to knowledge acquisition & skilling, student has to take up fieldwork on the chosen activity, as part of SEA/SAA course.
 - xv. This student-driven Fieldwork allow students to interact with the 'real world'. It is an autonomous learning (self-learning) situation that students are more actively involved during the activity and develop a deeper understanding and develop a more positive attitude.
 - xvi. Fieldwork consists of three phases: preparation, the actual activity and feedback
 - xvii. As part of fieldwork, student has to interact with at least two eminent personalities/achievers/renowned persons/inspiring and great personalities related to the activity chosen.
 - xviii. Fieldwork will benefit students for any careers where they need to work with communities of people or which involves analysis of complex processes, especially social and cultural.
 - xix. Certain skills are required for effective fieldwork, which include observation, communication, interviewing, problem solving, documentation, and more
 - xx. Other skills important for fieldwork practice include the ability to act in a crisis, to plan, set priorities, mobilize resources, and implement the plan effectively. These skills used in an integrated manner help students solve their problems and to develop one's own leadership style based on the need and culture of the place.
 - xxi. Eminent personalities/achievers/renowned persons/inspiring and great personalities

Eminent personalities/ Achievers / Renowned personalities:

- (a). In case of socially relevant problems/ activities of SEA/SAA: Eminent personalities/ achievers include district administrative officers, Eminent Social workers / NGOs, other inspiring and great personalities
- (b). **In case of Sports / Games and Cultural activities of SEA/SAA:** Eminent coaches/ trainers/gurus, achievers who represented/won state level/national level/international level competitions, other inspiring and great personalities.
- xxii. **For appointment to interact eminent personalities**: Student is expected to follow email etiquette rules and other appropriate polite communication etiquettes for getting appointment and time for interaction
- xxiii. On fieldwork, student is expected to demonstrate solid time management, organisational and note taking skills during fieldwork
- xxiv. **Ethics of fieldwork**: Fieldwork is an educational process with commitment to positive values. All fieldwork should be planned and conducted in a way that is ethical, responsible and safe, for people, students, visited communities, if any, and all other stakeholders. Student is expected to maintain integrity and honesty. Avoid bias and deception. Protect the rights and well-being of people involved in

- fieldwork. The privacy, confidentiality and respect for the eminent people interacted should be maintained and their time, inputs & guidance are to be acknowledged
- xxv. Student is expected to take care of health and Safety practices for fieldwork and travel
- xxvi. Student should remember that contrary to a *field trip or company visit*, **the emphasis in fieldwork is on acquiring skills**, and not on casually presenting theory and assessing.
- xxvii. For the fieldwork, student shall go with a scientifically designed questionnaire and record the responses during interaction. These response sheets, along with geotagged pic of fieldwork (at the time of interaction & practise sessions, if any) shall be appended as annexures in the report to be submitted for course evaluation.
- xxviii. **Feedback:** The learnings the student made out of interaction with eminent achievers shall be presented in the report as one of the chapters.
 - During feedback, the central focus is on the elaboration of the students' experience during fieldwork. Therefore, the student should create an end product, such as a demonstration/presentation and report in which they demonstrate a link between their experiences during fieldwork and the underlying theoretical concepts and ideas.
- (l) **Demonstration / Presentation and Report**: Student after presentation/demonstration of his/her achievements/work shall get a certificate from the concerned nodal unit and submit a report, in the prescribed format, to the faculty counsellor for award of grade.
- (m) Flow process for completion of SEA/SAA course:
 - xvi. *Faculty counsellor approval*: In week (-1), in consultation with faculty counsellor, every student shall, identifies minimum of 4 activities listed under SEA/SAA activities, lists their priority and fills the same in ONLINE REGISTRATION FORM FOR SEA/SAA (received in their domain mail id) to Dean, Student Affairs. Dean, Student Affairs shall release the section wise allotment of SEA/SAA courses to students along with the details of supervising faculty of nodal centre. The allotment details shall be shared to the SEA/SAA coordinator and the student through domain mail id of the student
- xvii. *Identification of goals and preparation of action plan:* In week (1), the respective faculty coordinator(s) of nodal centres shall address the students allotted to them to educate them on fixing goals, plan of action for completion and evaluation. In consultation with nodal centre, based on the workflow of the allotted activity, every student shall identify the goals (of activity) & eminent personalities (to be visited during the field trip) and prepare action plan (oriented workflow) for attaining the identified goals.
- xviii. *Field work:* Under the guidance of nodal centre, student shall complete the field work, based on the action plan, with the progress continuously monitored by the faculty counsellor and the nodal centre.
- xix. *Demonstration/ Presentation:* After completion of field work, student shall demonstrate/present his achievements (knowledge/skills gained during the activity) at the nodal centre in the presence of external experts/senior practitioners of the activity. After successful demonstration/presentation, the nodal centre shall provide a certificate of completion indicating that the student has completed the activity in the stipulated time.

KITSW - URR24 B. Tech CE Curriculum Page 179 of 197

- xx. *Report writing:* After successful demonstration/presentation, student shall write a 2–3-page report and submit the same to the faculty counsellor. The report shall emphasize knowledge, skills and qualities acquired through the SEA/SAA activities. It shall also include the influence of these activities on enhancing confidence, positive change in life, decision making, transforming choices into desired actions/outcomes.
- (n) Assessment & Evaluation: There shall be only Continuous Internal Evaluation (CIE) for SEA/SAA. The SEA/SAA activities shall be evaluated at the end of the semester through respective evaluation processes, which shall include field work, presentation/demonstration, submission of reports on the gathered data/information/surveys, the details of which have been shown in below table. The department level SEA/SAA coordinator shall collect marks from the nodal centres and faculty counsellors, consolidate them, and submit the final grades to the examination branch, within one week of the last day of instruction. Evaluation of SEA/SAA activities shall be completed as and when students are ready, but not later than week (N+1).

The CIE for SEA/SAA is as follows:

Assessment	Maximum marks	Marks to be awarded by
Goal setting, Planning &	20	Nodal centre
Knowledge Acquisition		
Field work	40	Nodal centre
Demonstration/Presentation	20	Nodal centre
Report submission	20	Faculty counsellor
Total	100	-

Note:

- (k) <u>Presentation/ Demonstration:</u> It is mandatory for the student to appear for demonstration and (or) oral presentation oral presentation to qualify for course evaluation. In case of presentation, student should prepare PPT with informative slides including the geo tagged photos of his/her field trips/interactions as per the schedule notified by the nodal centre. In case of demonstration, student must take timeslot from the nodal centre and demonstrate the skills learnt/improved during the allotted timeslot.
 - The necessary arrangements for demonstration shall be looked after the student in consultation with the coordinator with due permission from Head of the department.
- (l) **Report:** Each student is required to submit a well-documented report on the chosen SEA/SAA topic as per the format specified by *department level SEA/SAA coordinator*.
- (m) Anti-Plagiarism Check: The SEA/SAA report should clear plagiarism check as per the Anti-Plagiarism policy of the institute.
- (n) **Requirements for passing the course:** A student is deemed to have passed SEA/SAA if he/she
 - a. successfully demonstrates/presents the skills attained at the end of course as per the schedule notified by the nodal centre, <u>and</u>
 - b. scores a minimum of 40 marks in the CIE of the course
- (o) <u>Supplementary examination:</u> If a student fails in SEA/SAA activity of a particular semester, he must complete the same by enrolling it in the next higher semesters.

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

- **CO1**: integrate the five dimensions of physical, emotional, cognitive, spiritual and social aspects in life for holistic development and demonstrate social sensitivity
- **CO2**: interact effectively through written, oral and nonverbal communication with external world in a professional, sensitive and culturally relevant manner
- CO3: analyse the issues related to social empowerment / self-accomplishment, demonstrate problem-solving skills, articulate solutions and demonstrate social sensitivity
- CO4: demonstrate the generic competencies in making a well-documented report and an effective oral presentation with PPTs portraying knowledge, skills, qualities acquired through fieldwork/practice sessions and social impact of the course learning

Text / Reference book(s):

For knowledge acquisition, students shall refer to textbooks and web resources relevant to the course selected. Plan for fieldwork/practice sessions in coordination with SEA/SAA coordinator

Course	Course Articulation Matrix (CAM): U24VA409ZZ SEA-4/SAA-4													
СО		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24VA409.1	-	-	-	-	-	2	2	2	2	2	2	1	1
CO2	U24VA409.2	-	-	-	-	-	2	2	2	2	2	2	1	1
CO3	U24VA409.3	-	-	-	-	-	2	2	2	2	2	2	1	1
CO4	CO4 U24VA409.4 2 2 2 2 2 1 1										1			
U24V	U24VA409 2 2 2 2 2 1 1													
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

Course Code: U24VAXYY(SE/SA)ZZZ X represents semester; YY represents SEA/SAA course serial number in that semester; SE- represents SEA activity or SA – represents SAA activity; ZZZ represents activity code from SEA/SAA baskets

Ex: If A student selects a SEA/SAA course as	Ex: If A student selects a SEA/SAA course as
below:	below:
Semester: 1	Semester: 4
SEA/SAA course serial number: 09	SEA/SAA course serial number: 10
SEA/SAA category: SEA	SEA/SAA category: SAA
course number: 302	course number: 206
The course code will be U24VA109SE302	The course code will be U24VA410SA206

KITSW - URR24 B. Tech CE Curriculum Page 181 of 197

EXPERT TALK SERIES-4											
Class: B.Tech. IV -Semester Branch: Common to all branches											
Course Code:	Credits:	1									
Hours/Week (L-T-P-O-E): 0-0-0-1-1 CIE: 100%											
Total Number of Teaching Hours:	-	ESE:	-								

This course will develop students' knowledge in /on...

LO1: 21st century skills needed for industry, current industry trends, challenges and innovations

LO2: latest technology in practice and applying knowledge to solve real-world problems

LO3: smart work, soft skills, professional etiquette, networking abilities

LO4: making a well-documented report portraying the knowledge, skills, qualities acquired and the impact of the learning

In the 21st century, for successful career, degree alone won't suffice. Competencies are much more important.

- (q) You need to be aware of the real-world problems, industry working style, need to be confident and smart and you also need to know the tricks of the trade.
- (r) Learning from industry experts with real-world examples, is important to enhance your educational experience.
- (s) Enhanced graduate employability benefits all stakeholders. To effectively enhance employability and the immediacy of adding value to company/project, it is important that you are aware of what you are learning and its use in the workplace. The cognitive abilities viz., remember, understand, recall, and application of knowledge and other skills acquired in higher education can be maximised if you are clear on the purpose of your developed competencies and how to apply them in a range of complex situations.
- (t) Graduate employability could be enhanced through fostering lifelong learning, the development of a range of employability-related competencies and increased confidence and capacity in "reflecting on and articulating these capabilities and attributes in a range of recruitment situations".

But how would you know all this without venturing into the industry?

- (u) The answer is Industry **Expert Talk Series (ETS)**. Through ETS, we invite industry experts in different fields to deliver talks and interact with students.
- (v) Through Industry expert talks students get to know so much more that textbooks don't explain.
- (w) Students have the opportunity to learn from professionals who have achieved success in their respective fields. These speakers often share their personal experiences, case studies, and anecdotes, providing students with real-world examples and perspectives that go beyond theoretical concepts.
- (x) Our competency-focussed curriculum URR24 is designed to contribute greatly to the nurturing and development of each of these facets among students through ETS courses
- (y) ETS helps students gain improved industry engagement for an easier transition into the workplace, broader career progression opportunities and personal development.
- (z) In URR24 curriculum, Expert talk series (ETS) is offered as a course under **ability enhancement category of courses**.
 - (aa) Through ETS sessions, students get the chance to interact with industry regularly which helps them focus on the needs and requirements of current industry. This will not only enthuse the students with new ideas but also motivate them to understand what

- kind of 21st century skills are needed in industry and how they need to groom themselves.
- (bb) Through ETS sessions, another benefit is that students learn the importance of soft skills like communication, presentation, email etiquettes, corporate grooming and dressing styles. Conversing with successful people is the biggest motivation and students gain in more ways than one through ETS sessions.
- (cc) ETS enhances your learning in many ways for global opportunities for your career.
- (dd) All in all, learning from industry experts, is a wonderful opportunity for student to getting acquainted with professional etiquette, acquiring professional knowledge, and getting to know the internal workings of an organization.
- (ee) Salient features of ETS are hereunder:
 - (xxiii) ETS is offered from I semester to VI semester.
 - (xxiv) ETS, in any given semester, is treated as one credit course
 - (xxv) Students are required to earn six credits (from I to VI semester)
 - (xxvi) Head, Centre for i²RE shall be the institute level ETS coordinator
- (xxvii) Under this course, a minimum of 10 expert talks shall be organized in **online/offline mode** by the parent department / Centre for i²RE.
- (xxviii) Each expert talk shall be for a minimum duration of 45 minutes (*but not exceeding 90 minutes*) followed by **online quiz/test** for 10 marks (10 MCQs/FiBs ; *duration: 10-15 mins*), on the contents covered in the expert talk.
- (xxix) **The Head C-i**²**RE** shall share the marks obtained by the students in each of the quizzes / tests to the respective **department ETS coordinators**.
- (xxx) Each student shall attend a minimum of 6 expert talks and attempt the corresponding quizzes/ tests conducted at the end of the talks.
- (xxxi) **Report on ETS:** At the end of semester, the student shall submit a well-documented report on the acquired knowledge and skills, in the prescribed format, to the department ETS coordinator.
- (xxxii) **Evaluation:** There shall be only continuous Internal Evaluation (CIE) for ETS for a maximum of 100 marks
- (xxxiii) The department ETS coordinator shall, in coordination with institute level ETS coordinator, submit the final scores to the CoE in week (N+1).
- (ff) The CIE for ETS is as follows:

Rubrics for evaluation of ETS

Quiz score (sum of best 6 quiz scores out of 10 quizzes. Each quiz evaluated for 10 marks)	60 marks
Attendance (out of 10 quizzes)	20 marks
Report in prescribed format (max 30% plagiarism)	20 marks
Total	100 marks

iv. **Attendance**: Maximum of 20 marks shall be awarded based on the attendance maintained by the student over a maximum of 10 lectures.

$$Marks for attendance = \frac{Number of expert talks attended fully}{10} * 20$$

v. Supplementary Exam:

(m)Student has to register for ETS supplementary examination if he/she scores less than 40 marks in CIE

- (n) The ETS supplementary examination shall be conducted by the parent department, in physical mode, for 100 marks (MCQs/FiBs; *duration: 2Hrs*) on the content covered in ETS lectures.
- (o) Department ETS coordinator shall, in coordination with the institute level ETS coordinator, conduct the supplementary exam, and submit scores to the CoE
- (p) Exam material/resources for supplementary: Recorded videos of ETS arranged for that semester, which shall be made available on ETS webpage of institute website

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

CO1: identify real-world problems, different career paths, industry requirements, emerging job roles, business practices and exploit new opportunities by staying up-to-date with industry knowledge, trends and technology

CO2: identify what 21st century employability-related skills and professional etiquette are must in a range of recruitment situations, what skills are absent in him/her, and demonstrate skill improvement

CO3: interact with experts, exhibit confidence, demonstrate improved communication and networking abilities potentially leading to mentorship opportunities, internships, or even future job prospects

CO4: demonstrate the generic competencies in making a well-documented report portraying knowledge, skills, qualities acquired through ETS sessions and impact of the expert talks

Course	e Articulation M	1 atrix	(CAM)	:	U24AE410 EXPERT TALK SERIES - 4											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2			
CO1	U24AE410.1	1	1	1	1	1	1	2	1	2	1	2	1	1		
CO2	U24AE410.2	1	1	1	1	1	1	2	1	2	1	2	1	1		
CO3	U24AE410.3	1	1	1	1	1	1	2	1	2	1	2	1	1		
CO4 U24AE410.4 1 1 1 1 1 1 2 1 2 1 2 1										1	1					
U	U24AE410 1 1 1 1 1 1 2 1 2 1 2 1 1															
	3 - HIGH, 2 - MEDIUM, 1 - LOW															

ENVIRONMENTAL STUDIES											
Class: B.Tech. IV Semester Branch: Common to ME, CE, CSM,											
CSD, IT, CSN & CSO											
Course Code:	U24CY411	Credits:	0								
Hours/Week (L-T-P-O-E):	60%										
Total Number of Teaching Hours:	24 Hrs	ESE:	40%								

This course will develop students' knowledge in /on...

LO1: natural resources and their usage more equitably

LO2: ecosystem and the importance of biodiversity conservation

LO3: environmental pollution and it's control measures

LO4: environmental legislation and green methodology

UNIT-I 6 Hrs

The Multidisciplinary Nature of Environmental Studies: Definition, Scope and importance

Natural Resources: Forest Resources-Use and over exploitation of forests, Deforestation, Timber extraction, Mining, Dams and their effects on forests and tribal people; Water Resources-Use and over-utilization of surface and ground water, Floods, Drought, Conflicts over water; Mineral Resources-Environmental effects of extracting and using mineral resources; Energy Resources-Renewable and non-renewable energy sources, Use of alternate energy sources

Self- Learning Topics (SLTs): Use and over-utilization of surface and ground water (Text1: unit 2, topic: 2.2.2) world food problems (Text1: unit 2, topic 2.2.2)

UNIT-II 6 Hrs

Ecosystem and Biodiversity:

Ecosystem: Concepts of an ecosystem, Food chain, Food webs, Ecological pyramids, Energy flow in the ecosystem and ecological succession

Biodiversity and its Conservation: Introduction, Definition, Genetic, Species and ecosystem diversity, Value of biodiversity, Biodiversity in India, Hot spots of biodiversity, Man-wildlife conflicts, Endangered and endemic species of India; In-situ and Ex-situ conservation

Self- Learning Topics (SLTs): Introduction and definition of biodiversity (Text1: unit 4, topic 4.1)

UNIT-III 6 Hrs

Environmental Pollution: Global issues-Global climatic change, Greenhouse gases, Effects of global warming, Ozone layer depletion

International Conventions/Protocols: Earth summit, Kyoto protocol, Montreal protocol **Environmental Pollution-**Causes and effects of air, Water, Soil, Marine and noise pollution with case studies

Solid and Hazardous Waste Management: Introduction, Types, Effects of urban industrial and nuclear waste

Natural Disaster Management: Introduction to disaster, Management of disaster, Disaster management of flood, earthquake, cyclone and landslides

Role of information technology in environment and human health

Self- Learning Topics (SLTs): Role of individual in prevention of pollution (Text1: unit 5, topic 5.10)

UNIT-IV 6 Hrs

Social Issues and the Environment: Role of Individual and Society, Water conservation, Rain water harvesting

Environmental Protection/Control Acts: Air (prevention and control of pollution) act 1981, Forest conservation act (1980 and 1992), Wildlife protection act 1972, Environment protection act 1986, Issues involved in enforcement of environmental legislations

Green Methodology: Principles of green chemistry, Green methods in electronic production, Impact of electronic waste on public health and environment

The Sustainable Development Goals (SDGs): United Nations Sustainable Development Goals **Self- Learning Topics (SLTs):** Water (prevention and control of pollution) act 1974 (Text1: unit 6, topics 6.10), Water pollution cess act 1977 (Text1: unit 6, topics 6.11)

Text book(s):

1. Erach Bharucha, *Text Book of Environmental Studies for Under Graduate Courses*, 2nd ed., Universities Press (India) Pvt. Ltd, 2013

Reference Book(s):

- 1. Y. Anjaneyulu, Introduction to Environmental Science, B.S. Publications, 2004.
- 2. Gilbert M. Masters, Introduction to Environmental Engineering & Science, 3rd ed., Prentice Hall of India,1991
- 3. Anubha Kaushik, C.P. Kaushik, *Environmental Studies*, 4th ed., New Age International Publishers, 2014
- **4.** R. Rajagopalan, Environmental Studies from crisis to cure, Oxford University Press, 2nd ed., 2011

Web and Video link(s):

- 1. https://archive.nptel.ac.in/noc/courses/noc22/SEM1/noc22-ch27/ video lecture on renewable energy resources by Prof. Vaibhav. V. Goud and Dr. R. Anandalakshmi, Dept. Of Chemical Engineering, Guwahati.
- 2. https://sdgs.un.org/goals; UN's webpage on 17 sustainable Development Goals
- 3. https://onlinecourses.nptel.ac.in/noc23_hs57/preview United nations Sustainable Development Goals

Course Learning Outcomes (COs):

After completion of this course, the students should be able to,

CO1: identify the natural resources and practice their usage more equitably

CO2: develop an action plan for sustainable alternatives and conserving biodiversity

CO3: examine and perceive the solutions for the environmental pollution

CO4: adapt issues involved in enforcement of environmental legislation and green methodology

Course A		U2	4CY4	11:EN	VIRO	NMEN	TAL	STUI	DIES					
СО		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CY411.1	2	1	2	1	-	2	1	1	1	-	ı	-	-
CO2	U24CY411.2	-	-	2	-	-	1	1	1	1	1	-	-	-
CO3	U24CY411.3	1	2	1	-	-	1	1	1	1	1	1	-	-
CO4	U24CY411.4	-	-	1	-	-	1	1	1	1	,	1	-	-
U	U24CY411 1.50 1.50 1.50						1.25	1	1	1	1	1	-	-
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

BUILDING PLANNING AND DRAWING LABORATORY

Class: B.Tech. IV -Semester	Branch: Civil Engineering				
Course Code:	U24CE412	Credits:	1		
Hours/Week (L-T-P-O-E):	0-0-2-2-4	CIE:	60%		
Total Number of Lab Hours:	36 Hrs	ESE:	40%		

Course Learning Objectives (LOs):

This course will develop students' knowledge in /on...

LO1: functional planning of building and conventional signs

LO2: different types of doors, windows and stair cases

LO3: developing plan, section and elevation of buildings using AutoCAD

LO4: develop a 3D plan from floor plan

LABORATORY COMPONENT

- 1. Introduction to Building Planning as per NBC recommendations
- 2. Description of Building components as per NBC recommendation
- 3. Introduction to AutoCAD, practice drawing and modify commands in AutoCAD
- 4. Drawing Conventional signs in AutoCAD
- 5. Planning of space from Line diagram and development of plan, section and elevation
- 6. Drawings of Various types of doors, windows
- 7. Plan and Section of Dog-Legged staircase, Open Well Staircase and Spiral Staircase using AutoCAD
- 8. Plan, section and elevation of a residential building with restricted/unrestricted plinth area
- 9. Plan, section and elevation of a school building
- 10. Plan, section and elevation of a primary health centre
- 11. Development of site layout with restricted area for required amenities
- 12. Plan of a Dream house/Duplex house
- 13. Floor plan of a Residential Complex/Apartment
- 14. Development of a floor plan into 3D building

Laboratory Manual:

• Building Planning and Drawing Laboratory, Laboratory Manual & Record Book (LMRB) by faculty of Civil Engineering Department, KITSW

Text/ Reference Book(s):

- [1] Bureau of Indian Standards, National Building Code of India, 2nd revision, New Delhi: BIS, 2016.
- [2] M. G. Shah, C. M. Kale, S. Y. Patki, Building Drawing: With an Integrated Approach to Built Environment, NewDelhi: Tata McGraw Hill Book Company Limited, 2002.
- [3] T. Jeyapoovan, Engineering Drawing and Graphics Using Autocad, 3rd ed. New Delhi: Vikas Publishing, 2016.

Course Learning Outcomes (COs):

After completion of this course, the students should be able to ...

(based on psychomotor skills acquired from laboratory component)

- CO1: illustrate conventional signs and functional planning of buildings
- CO2: compare the design, materials, and practical uses of various doors, windows, and staircases
- CO3: create plan, section and elevation of buildings using AutoCAD
- CO4: develop floor plan into 3D building plan

Course	e Articulation M	U	24 CE4	112 B	uildi	ng Pla	nning	and I	Orawi	ng La	borato	ry		
СО		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2
CO1	U24CE412.1	2	1	-	-	1	1	2	1	1	-	1	1	1
CO2	U24CE412.2	2	1	-	-	1	1	2	1	1	-	1	1	1
CO3	U24CE412.3	2	1	1	-	1	1	2	1	1	1	1	1	1
CO4	CO4 U24CE412.4 2 1				-	1	1	2	1	1	1	1	1	1
	U24 CE412 2 1					1	1	2	1	1	1	1	1	1
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

TRANSPORTATION ENGINEERING											
Class: B.Tech. IV -Semester Branch: Civil Engineering											
Course Code: U24CE413X Credits:											
Hours/Week (L-T-P-O-E):	Hours/Week (L-T-P-O-E): 2-0-2-0-4 CIE: 60(%)										
Total Number of Teaching Hours: 32 Hrs ESE: 40(%)											

This course will develop students' knowledge in /on...

LO1: highway development and geometric design of highways

LO2: traffic flow characteristics and traffic studies

LO3: highway materials and pavement construction practices

LO4: design of low volume roads and their evaluation

THEORY COMPONENT UNIT-I 4 Hrs

Highway Development: Planning surveys and their interpretation, Highway alignment, Engineering surveys for alignment

Geometric Design of Highway: Cross section elements, Sight distance – Stopping sight distance, Overtaking sight distance and intermediate sight distance, Introduction to horizontal and vertical alignment - Super elevation, Transition curves, Gradient, Vertical curves

Self-Learning Topics (SLTs): Importance of Transportation (Text1: chapter1, topic 1), significance of planned road network (Text1: chapter1, topic 1.4), Current Road development programs in India (Text1: chapter1, topic 1.5), Importance of Geometric Design (Text1: chapter4, topic 4.1), Objectives of providing transition curves (Text1: chapter4, topic 4.4.7) Grade compensation on Horizontal Curves (Text1: chapter4, topic 4.5.2)

UNIT-II 4 Hrs

Traffic Engineering: Traffic stream components and characteristics. Traffic capacity, Level of service (LOS), Factors affecting capacity and LOS. Traffic Control- purpose of traffic signs, Signal and signal warrants

Traffic Studies: Traffic volume studies, Spot speed studies, Evaluation of traffic signs *Self-Learning Topics (SLTs):* Scope of traffic engineering (Text1: chapter5, topic 5.1.2), road user and vehicular characteristics (Text1: unit 5, topic 5.2), Passenger Car Units (Text1: chapter5, topic 5.4.4), Classification and general specifications for traffic signs (Text1: chapter 5, topic 5.5.4)

UNIT-III 4 Hrs

Pavement Materials: Soil-Index properties, Classification, CBR, Compaction, Sub-grade soil strength, Aggregate – Desirable properties, Tests on road aggregates, Bituminous binders-Types, tests on bitumen

Pavement Construction: Types of pavements, Components and functions of different pavements, Highway construction practice – Subgrade, Embankment, Water bound macadam, Wet mix macadam, Prime coat, Tack coat, Surface dressing, Bituminous concrete **Self-Learning Topics (SLTs):** California Bearing Ratio (Text1: chapter6, topic 6.2.8), Grading of Bitumen (Text1: chapter6, topic 6.4.4), General features of Highway Construction (Text1: chapter8, topic 8.1)

UNIT-IV 4 Hrs

Design of Low Volume Roads: Low volume roads, Structural design of flexible and rigid pavements

Pavement Evaluation: Classification of highway maintenance, Distresses in flexible pavements, Structural evaluation of flexible pavements, Maintenance measures, Pavement overlay design using Benkelman beam deflection method

Self-Learning Topics (SLTs): Importance of Highway Maintenance works (Text1: chapter10, topic 10.1), Maintenance requirement in different road components (Text1: chapter10, topic 10.3) Pavement maintenance management system (Text1: chapter10, topic 10.7)

LABORATORY COMPONENT

List of Experiments

- 1. Determination of mechanical strength of aggregate for pavements.
- 2. Determination of specific gravity of aggregate
- 3. Determination of shape indices for aggregate
- 4. Determination of Grading of aggregate for pavements
- 5. Determination of ductility value and flash point for bitumen
- 6. Determination of softening point and penetration value for bitumen
- 7. Determination of absolute and kinematic viscosity tests for bitumen
- 8. Determination of spot speed for given location
- 9. Determination geometry of cross-sectional elements and development of road alignment using Auto CAD.

Textbook(s):

1. S. K. Khanna, C. E. G. Justo, A. Veeraraghavan, *Highway Engineering*, 10th ed., Roorkee, Nem Chand & Bros, 2015.

Reference Book(S):

- 1. IRC: SP-72 (2015): Guidelines for the design of flexible pavements for low volume roads.
- 2. IRC 81 (1997): Guidelines for Strengthening of Flexible Road Pavements using Benkelman Beam Deflection Technique.
- 3. IRC (2014): Ministry of Rural Development Specifications for Rural Roads, MoRD code: First revision.

Web and Video link(s):

https://nptel.ac.in/courses/105105107NPTEL course on Introduction to Transportation Engineering, IIT Kharagpur, Dr. K. S. Reddy and Dr. Bhargab Maitra

Laboratory Manual (for laboratory component):

1. "Highway Engineering Laboratory Manual", prepared by faculty of Department of Civil Engineering, KITSW.

Course Learning Outcomes (COs)

After completion of this course, the students should be able to,

(based on cognitive skills acquired from the theory component)

- CO1: evaluate highway planning and geometric elements based on a comprehensive set of factors
- **CO2**: demonstrate traffic stream components and its characteristics
- CO3: evaluate highway materials and pavement construction practices
- CO4: analyse structural failure of pavements

(based on psychomotor skills acquired from the laboratory component)

- CO5: test the properties of aggregates
- CO6: analyse the particle size distribution of aggregate for pavements
- **CO7**: test the properties of bitumen
- CO8: predict the traffic stream characteristics

Cours	Course Articulation Matrix (CAM): U24CE413X TRANSPORTATION ENGINEERING													
CO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO1	PSO2
CO1	U24CE413X.1	2	2	2	2	-	1	1	1	1	2	1	2	2
CO2	U24CE413X.2	2	1	1	2	-	2	1	1	1	1	1	2	1
CO3	U24CE413X.3	2	1	1	2	-	2	1	1	1	1	1	2	1
CO4	U24CE413X.4	2	2	2	2	-	1	1	1	1	2	1	2	2
CO5	U24CE413X.5	2	1	1	1	-	1	1	2	2	1	1	2	2
CO6	U24CE413X.6	2	1	1	1	-	1	1	2	2	1	1	2	1
CO7	U24CE413X.7	2	1	1	1	-	1	1	2	2	1	1	2	1
CO8	U24CE413X.8	2	1	1	1	1	1	1	2	2	1	1	2	2
	U24CI413X	2	1.25	1.25	1.5	1	1.25	1	1.5	1.5	1.25	1	2	1.5
	3 - HIGH, 2 - MEDIUM, 1 - LOW													

ENVIRONMENTAL ENGINEERING										
Class: B.Tech. IV -Semester Branch: CIVIL										
Course Code:	U24CE414X	Credits:	3							
Hours/Week (L-T-P-O-E):	CIE:	60 %								
Total Number of Teaching Hours: 32 Hrs ESE: 40 %										

This course will develop students' knowledge in /on...

LO1: quantity and quality aspects of water

LO2: procedures in water treatment and distribution

LO3: sewage analysis and hydraulic design of sewers

LO4: primary and secondary treatment methods of sewage

UNIT-I 4 Hrs

Water Demand: Sources of water supply, Types of water demand, Per capita demand, Factors affecting per-capita demand, Factors affecting water losses, Fluctuations in water demand and its effects on water supply scheme, Design period, Population forecasting methods, Fire demand

Water Quality Parameters: Physical, Chemical and biological characteristics of water quality, Waterborne diseases and their control, Quality standards for municipal supplies

Self-Learning Topics (SLTs): Sources of Water Supply (Chapter 1, Vol. 1), Types of Water Demand (Chapter 1), BIS (IS 10500:2012) and WHO drinking water guidelines (Chapter 7, Vol. 1)

UNIT-II 4 Hrs

Water Treatment Process: Screening, Plain sedimentation, Sedimentation aided with coagulation, Filtration, Disinfection, Softening, Aeration

Water Distribution System: General requirements, Layouts of distribution networks, Methods of supply, Systems of supply, Distribution reservoirs, Types, Functions, Storage capacity of distribution reservoirs, Design of distribution networks, Appurtenances in distribution system

Self-Learning Topics (SLTs): Layouts of distribution networks, Methods of supply, and Systems of supply (chapter 9, Vol. 1)

UNIT-III 4 Hrs

Sewage Characteristics: Physical, Chemical and Biological characteristics of sewage, Analysis of sewage, Biochemical oxygen demand and dissolved oxygen profile processes and kinetics involved, Sewerage systems, Merits and demerits, Estimation of dry weather flow, Estimation of storm water flow

Sewerage System Design: Hydraulic design of sewer, Hydraulic formulae for design of sewers, Minimum and maximum velocity of flow, Materials, Joints, Shapes, Sewer appurtenances

Self-Learning Topics (SLTs): Merits and demerits of Sewerage system (Chapter 1, Vol. 2), appurtenances (Chapter 5, Vol. 2)

UNIT-IV 4 Hrs

Sewage Treatment Process: Primary treatment, Theory and design of screens, Grit chamber, Skimming tanks, Sedimentation tanks

Secondary Treatment of Sewage: Activated sludge process, Sewage filtration, Oxidation ditch, Oxidation ponds, Aerated lagoons, Rotating biological contactors, Treatment and disposal of sludge, On-site disposal methods (land and water body)

Self-Learning Topics (SLTs): Grit Chamber (Chapter6, Vol.2), Disposal of Sludge (Chapter7, Vol. 2).

LABORATORY COMPONENT

List of Experiments

- 1. Determination of pH and Alkalinity of water sample
- 2. Determination of Acidity of water sample
- 3. Determination of Total Solids, Total dissolved solids and Suspended solids of water sample
- 4. Determination of Conductivity of water sample
- 5. Determination of Temporary and Permanent Hardness of water sample
- 6. Determination of Optimum Coagulant dosage of water sample using Jar test.
- 7. Determination of Chloride content of water sample
- 8. Determination of Dissolved Oxygen of water sample
- 9. Determination of Biological Oxygen Demand of water sample
- 10. Determination of Chemical Oxygen Demand of water sample
- 11. Determination of Break-point Chlorination
- 12. Determination of Sulphates

Course Learning Outcomes (COs):

After completion of this course, the students should be able to...

(based on cognitive skills acquired from theory component)

CO1: analyze problems related to water quality and quantity

CO2: apply methods for purification of water and design water distribution systems

CO3: design the sewage systems

CO4: interpret methods for purification and disposal of sewage

(based on psychomotor skills acquired from laboratory component)

CO5: assess the quality of water for suspended matter

CO6: evaluate hardness and chloride content of the water samples

CO7: estimate dissolved oxygen concentration in water sample

CO8: determine the concentration of degradable organic matter

Text book(s):

- 1. P.N. Modi, *Water supply Engineering-Environmental Engineering-*I, 5th ed., New Delhi: Standard Book House, 2016. (Chapters 1, 2, 6, 8, 9 and 10)
- 2. P.N. Modi, Sewage Treatment and Disposal Environmental Engineering-II, 5th ed., New Delhi: Standard Book House, 2015. (Chapters 1, 2, 3, 4, 6, 8, 11, 13, 14 and 17)

Laboratory Manual (for laboratory component):

1. Environmental Engineering Laboratory Manual, prepared by the faculty of Civil Engineering Department, KITSW.

Reference Book(s):

- 1. Howard S. Peavy, Donald R. Rower and George Tchobanoglous, *Environmental Engineering*, New Delhi: McGraw-Hill International Edition, 2014.
- 2. B.C. Punmia, A.K. Jain, A.K.Jain, *Water supply Engineering- Environmental Engineering- I*, 2nd ed. New Delhi: Laxmi Publications, 2016.
- 3. B.C. Punmia, A.K. Jain, A.K.Jain, *Wastewater Engineering-Environmental Engineering-II*, 2nd ed., New Delhi: Laxmi Publications, 2016.
- 4. Metcalf and Eddy, Wastewater Engineering: Treatment and Reuse, Edition, New Delhi: McGraw-Hill, 2017.

Web and Video link(s):

- 1. https://archive.nptel.ac.in/courses/105/105/105105201/NPTEL Video Lecture on Water Supply Engineering by Prof. Manoj Kumar Tiwari, IIT Kharagpur.
- 2. https://nptel.ac.in/courses/105106119/ NPTEL Video Lecture on Water & Wastewater Quantity by Prof. C. Venkobachar, Prof. Ligy Philip, Prof. B.S. Murthy, IIT Madras.

Course Articulation Matrix (CAM): U24CE414X ENVIRONMENTAL ENGINEERING														
CO		РО	PO	РО	PO	РО	PSO							
		1	2	3	4	5	6	7	8	9	10	11	1	2
CO1	U24CE414X.1	2	1	1	1	-	1	1	1	1	1	1	2	1
CO2	U24CE414X.2	2	1	1	1		1	ı	1	1	1	1	2	1
CO3	U24CE414X.3	2	1	1	1	-	1	-	1	1	1	1	2	1
CO4	U24CE414X.4	2	1	1	1	-	1	1	1	1	1	1	2	1
CO5	U24CE414X.5	2	1	1	1	-	1	1	1	1	1	1	2	1
CO6	U24CE414X.6	2	1	1	1	-	1	-	1	1	1	1	2	1
CO7	U24CE414X.7	2	1	1	1	-	1	-	1	1	1	1	2	1
CO8	U24CE414X.8	2	1	1	1	-	1	1	1	1	1	1	2	1
U24CE414X		2	1	1	1	-	1	1	1	1	1	1	2	1
3 - HIGH, 2 - MEDIUM, 1 - LOW														

DESIGN, DETAILING AND DRAWINGS OF STRUCTURES										
Class: B.Tech. IV -Semester Branch: Civil Engineering										
Course Code:	U24CE415X	Credits:	3							
Hours/Week (L-T-P-O-E):	2-0-2-0-4	CIE:	60(%)							
Total Number of Teaching Hours:	32 Hrs	ESE:	40(%)							

This course will develop students' knowledge in /on...

LO1: layouts and structures for compliance with standards **LO2:** design and drafting of structural systems using IS codes **LO3:** technical data for plans and detailing in AutoCAD

LO4: validation of RCC/steel structures using STAAD Pro

THEORY COMPONENT								
UNIT-I	4 Hrs							

CAD Skills and Drafting Conventions: Civil Drafting using AutoCAD, Drawing tools- lines, Arcs, Circles, Offset, Trim, Dimension, Hatch, Using layers, Blocks, Templates, Dimensions, Plotting and printing drawings, Setting scales, Layout tabs

Drawing Conventions and Civil Symbols: Conventional signs: Brickwork, Concrete, Earth, Wood, Reinforcement, Title Block, North direction, Revision box, Notes, Drawing simple plans with Auto CAD, Single room, Stair case

Self-Learning Topics (SLTs): Introduction to CAD and Auto CAD, basic commands (Text2: ch.1,2,3), Introduction to CAD(Text1: ch 17, pp 181-183)

UNIT-II 4 Hrs

Design and Drawing of Residential Structures: Types of buildings, Site selection and planning, Orientation, Planning and drafting a simple load-bearing house, Plan, Elevation, and Sectional drawing of a 1BHK house, Planning principles- Room sizes, Furniture layout, Natural lighting

Framed Structures and Layout Drawings: G+1 RCC Structure-beam-column layout, Column positioning, Footings, Plinth beam layout, Simple load assumptions and framing decisions

Self-Learning Topics (SLTs): Types of Residential Buildings, based on occupancy, basic concepts of building elements (Text 1: ch.2,3,4 pp.3-54)

UNIT-III 4 Hrs

RCC Design and Detailing: Reinforcement types, Spacing, Cover, Hooks, Laps, Design and Detailing of RCC singly and doubly reinforced beams, Detailing using Auto CAD

Masonry and Foundation Detailing: Shallow foundations- Isolated footing, Combined footing, Wall sections, Brick bonds, Lintels and Sunshades, Typical cross-sections and dimensioning in working drawings

Self-Learning Topics (SLTs): Examples in design and analysis of Singly reinforced beams, doubly reinforced beams (Ref. Text. 7, ch. 5, 6 pp. 48-69, 70-78), Foundations (Ref. Text. 1, ch. 7), Masonry Constructions (Ref. Text. 1, ch. 8)

UNIT-IV 4 Hrs

STAAD Pro: Analysis and design of RCC simply supported beam, Portal frame, Design and Detailing of Steel Structures, Simple steel truss design, Base plate, Gusset detailing, IS sections-Angle, Channel, I-section, T-section, Bolted connections, Drafting steel details

STAAD Pro Modelling: STAAD Pro interface and workflow, Modelling beams, Columns, and Slabs, generating analysis reports and exporting drawings

Self-Learning Topics (SLTs): Introduction and overview of Staad Pro Environment menus and toolbars (Ref.Text.5, ch. 1,2,3)

LABORATORY COMPONENT

List of Experiments

- 1. Create a civil engineering symbols chart (e.g., earth, concrete, brick) and insert into a title-blocked sheet.
- 2. Draft a simple room layout with dimensions, hatching, and annotations using AutoCAD.
- 3. Draft plan, elevation, and section of a 1BHK load-bearing house plan with views using AutoCAD.
- 4. Draft beam-column layout for a G+1 framed building and generate centreline drawing.
- 5. Prepare bar bending schedule and reinforcement detailing for a simply supported RCC beam and RCC slab.
- 6. Draft cross-sectional drawing of brick masonry wall with isolated footing and label its components.
- 7. Detailing of a simple steel truss with gusset plates, base plates showing steel connections using standard sections using Auto CAD.
- 8. Analysis and design of a RCC Framed structure using STAAD Pro

Course Learning Outcomes (COs)

After completion of this course, the students should be able to,

(based on cognitive skills acquired from theory component)

CO1: plan architectural and structural drawings using standard conventions

CO2: design residential and framed structure components using IS codes

CO3: prepare detailed RCC and masonry drawings with reinforcement details

CO4: analyse and model RCC/steel structures using STAAD Pro

(based on psychomotor skills acquired from laboratory component)

CO5: draft and annotate 2D residential drawings in AutoCAD

CO6: detail RCC components digitally using CAD tools

CO7: organize drawing sheets with accurate dimensioning and scaling

CO8: model RCC/steel elements in STAAD Pro

Text book(s):

- 1. S.S. Bhavikatti and M.V Chitawadagi, *Building Planning and Drawing*, 1st ed. I K International Publishing House Pvt. Ltd, 2023, (Chapters 2, 3, 4, 8, 10, 11, 13, 14, 16, 17, 18)
- 2. P.S. Gil, Learning AUTOCAD, 1st ed., New Delhi, S.K Kataria and Sons, 2023. (1 to 19).

Reference Book(S):

- 1. Arora, S. P., & Bindra, S. P., *A textbook of building construction*, 10th ed, Dhanpat Rai Publications, 2013.
- 2. Chakraborti, M, Building planning and drawing, 28th ed., Chakraborti Publications, 2021.
- 3. Duggal, S. K. Design of steel structures, 3rd ed, McGraw Hill Education, 2014.
- 4. Rangwala, S. C., Civil engineering drawing, 25th ed, 2014. Charotar Publishing House.
- 5. Sarma, T. S., STAAD Pro V8i for beginners: With Indian examples, 2014, Notion Press.
- 6. Tickoo, S., AutoCAD 2023 for engineers and designers, 19th ed. 2013, CADCIM Technologies.
- 7. Varghese, P. C., Limit state design of reinforced concrete, 2nd ed. 2013, PHI Learning.

Web and Video link(s):

1. https://youtu.be/EgKc9L7cbKc?si=wqQqNvshGsdZAutR NPTEL Video Lecture Series on Computer Aided Design by Dr. Anoop Chawla, Department of Mechanical Engineering, IIT Delhi.

<u>Laboratory Manual</u> (for laboratory component):

1. Design, detailing and drawings of structures Manual, prepared by the faculty of Civil Engineering Department, KITSW.

Course Articulation Matrix (CAM):				U24CE415X DESIGN, DETAILING AND DRAWINGS OF STRUCTURES										
CO PO1 PO2			PO3	PO4	PO5	PO6	PO7	PO8		PO10	PO11	PSO1	PSO2	
CO1	U24CE415X.1	2	1	1	1	2	1	-	1	1	1	1	2	2
CO2	U24CE415X.2	2	1	1	1	2	1	_	1	1	1	1	2	2
CO3	U24CE415X.3	2	1	1	1	2	1	1	1	1	1	1	2	2
CO4	U24CE415X.4	2	1	1	1	2	1	1	1	1	1	1	2	2
CO5	U24CE415X.5	2	1	1	1	2	1	ı	1	1	1	1	2	2
CO6	U24CE415X.6	2	1	1	1	2	1	ı	1	1	1	1	2	2
CO7	U24CE415X.7	2	1	1	1	2	1	1	1	1	1	1	2	2
CO8	U24CE415X.8	2	1	1	1	2	1	1	1	1	1	1	2	2
U24CI415X 2 1		1	1	1	2	1	1	1	1	1	1	2	2	
3 - HIGH, 2 - MEDIUM, 1 - LOW														